
1

1

Debugging and debuggers

 You have probably already had the experience of making
a mistake in a program

 Speaking roughly, “debugging” is the process:

 After you know that your code is wrong

 But before you know how it is wrong

 Some kinds of debugging that don’t need much tool
support:

 Code review

 Rubber duck debugging

 Printf debugging

2

Debugging in the development cycle

Add
functionality

Edit

Compile

Test

Debug

3

What is a debugger for?

 Not to fix your bugs for you, alas

 Computers aren’t that smart yet

 Instead, helps you examine your program’s execution in
more detail
 See what is happening if something is obviously wrong

 Walk through normal execution, to compare with your
expectations

 Standard practice is source-level debugging
 I.e., the debugger shows your program in terms of its source code

 For binaries, made possible by debugging information (enabled
with compiler option -g)

4

The GNU debugger GDB

 Standard command-line, source and binary-level
debugger on Linux

 Start up with gdb ./my_program

 Supply program arguments to the GDB run command

 Abbreviated just r

 Or, use gdb --args ./my_program arg1 arg2

 This mode doesn’t work for redirection (shell <, >)

 Today: using GDB as a source-level debugger

5

break, step, next, continue

 Normally, GDB will execute your program normally

 To get it to stop to let you look around, turn on a
breakpoint with the command break (b)

 Argument can be function name, file and line number, others

 When the breakpoint is reached, your program will stop
and you can give GDB commands

 Run the program for one line with step (s)
 Variant next (n) does not go into other functions

 To go back to full-speed execution, use continue (c)

6

print

 The most important command for examining program
state is print (p)

 The argument is a source-level (i.e., C) expression

 Some features to know about
 Can do arithmetic

 Can refer to any variable in scope

 Can call functions

 Can do assignments

 p/x prints in hexadecimal (other formats also available)

2

7

Crashes, interrupts, and backtrace

 GDB will automatically stop if the program runs into a
crash like a segfault (technically: a Unix signal)

 To stop in the middle of execution, type Ctrl-C

 Good for debugging infinite loops

 The command backtrace (bt) summarizes all the
currently executing functions
 Similar to what Java and Python print for an unhandled exception

8

Watchpoints

 A watchpoint is sort of like a breakpoint, but based on
data

 The command watch takes an argument like print

 A watchpoint stops execution when that value changes

 Useful for tracking down problems caused to pointers

 If you use a source-level expression, you’ll usually get a
software watchpoint, which is slow
 Later, we’ll see hardware watchpoints

9

Overview: GDB without source code

 GDB can also be used just at the instruction level

Source-level GDB Binary-level GDB

step/next stepi/nexti

break <line number> break *<address>

list disas

print <variable> print with registers & casts

print <data structure> examine

info local info reg

software watch hardware watch

10

Disassembly and stepping

 The disas command prints the disassembly of
instructions
 Give a function name, or defaults to current function, if available

 Or, supply range of addresses <start>,<end> or <start>,+<length>

 If you like TUI mode, “layout asm”

 Shortcut for a single instruction: x/i <addr>, x/i $rip

 disasm/r shows raw bytes too

 stepi and nexti are like step and next, but for
instructions
 Can be abbreviated si and ni

 stepi goes into called functions, nexti stays in current one

 continue, return, and finishwork as normal

11

Binary-level breakpoints

 All breakpoints are actually implemented at the
instruction level
 info br will show addresses of all breakpoints

 Sometimes multiple instructions correspond to one source location

 To break at an instruction, use break *<address>

 Address usually starts with 0x for hex

 The until command is like a temporary breakpoint and
a continue
 Works the same on either source or binary

12

Binary-level printing

 The print command still mostly uses C syntax, even
when you don’t have source
 Registers available with $ names, like $rax, $rip

 Often want p/x, for hex

 Use casts to indicate types
 p (char)$r10

 p (char *)$rbx

 Use casts and dereferences to access memory
 p *(int *)$rcx

 p *(char **)$r8

 p *((int*)$rbx + 1)

 p *(int*)($rbx + 4)

3

13

Examining memory

 The examine (x) command is a low-level tool for
printing memory contents
 No need to use cast notation

 x/<format> <address>

 Format can include repeat count (e.g., for array)

 Many format letters, most common are x for hex or d for decimal

 Size letter b/h/w/gmeans 1/2/4/8 bytes

 Example: x/20xg 0x404100

 Prints first 20 elements of an array of 64-bit pointers, in hex

14

More useful printing commands

 info reg prints contents of all integer registers, flags

 In TUI: layout reg, will highlight updates

 Float and vector registers separate, or use info all-reg

 info frame prints details about the current stack

frame
 For instance, “saved rip” means the return address

 backtrace still useful, but shows less information

 Just return addresses, maybe function names

15

Hardware watchpoints

 To watch memory contents, use print-like syntax with
addresses
 watch *(int *)0x404170

 GDB’s “Hardware watchpoint” indicates a different
implementation
 Much faster than software

 But limited in number

 Limited to watching memory locations only

 Watching memory is good for finding memory corruption

