
CSci 4271W
Development of Secure Software Systems

Day 24: Human factors part 2: general best practices
Stephen McCamant (he/him)

University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Human factors
Ultimately, most computing systems will involve people at
some point. How do we design security mechanisms that
take the needs, abilities and goals of people into account?

Photo credits via freepik.com: rawpixel.com, wayhomestudio, rawpixel.com

What are we building? (1)

Three primary kinds of interactions occur in user
interactions for security:

Authentications prove that a person can access a
computer, application, or resource

Warnings inform a person that an action will or could
have security consequences

Configurations allow a person to make decisions
about the security policy of a system

What are we building? (2)

Configurations can include:

Configuration of software settings

Consenting to terms

Authorization of permission settings

Verification of settings or claims

Auditing the state of the system

Challenges with users

Conditioning: people learn to respond to frequent stimuli
Habituation: people learn to ignore frequent warnings

Wicked environment: no way to tell when a decision was bad

Challenges with users

Conditioning: people learn to respond to frequent stimuli

Habituation: people learn to ignore frequent warnings

Wicked environment: no way to tell when a decision was bad

Challenges with users

Conditioning: people learn to respond to frequent stimuli

Habituation: people learn to ignore frequent warnings

Wicked environment: no way to tell when a decision was bad

Challenges with users

Conditioning: people learn to respond to frequent stimuli
Habituation: people learn to ignore frequent warnings

Wicked environment: no way to tell when a decision was bad



Challenges with users

Conditioning: people learn to respond to frequent stimuli
Habituation: people learn to ignore frequent warnings

Wicked environment: no way to tell when a decision was bad

Challenges with users

Conditioning: people learn to respond to frequent stimuli
Habituation: people learn to ignore frequent warnings

Wicked environment: no way to tell when a decision was bad

User behavior
Goal Orientation: when people are using computers, they are trying to
achieve a task.

Confirmation Bias: people look for information that confirms their
expectations.

What can go wrong

Channel of
contact
Email
Website
Social
Network
IM
Physical

Thing
spoofed
UI element
Product or
service
Person you
know
Organization
Person you
don’t know
An authority

Persuasion
to interact
Greed
Fear
Social
relationship
Business
relationship
Curiosity
Lust

Human act
exploited
Open doc
Click link
Attach
device
Run program
Enter
credentials
Establish
relationship

Technical
spoofing
System
dialog
Filename
File type
Icon
Filename
(multilingual)

Outline

Review: what we’re building

Announcements intermission

General best practices

Bonus: DNSSEC and ceremonies

Upcoming activities

Homework 6 is due Tuesday night 4/29

Project part 3 materials and assignments posted
One section draft due Thursday 5/1
Final report due Monday 5/5, no extensions

Final exam Saturday 5/10

Outline

Review: what we’re building

Announcements intermission

General best practices

Bonus: DNSSEC and ceremonies

Threat elicitation

How do we find out what can go wrong in our system?



Ceremonies
Explicitly model users’ role(s) in protocols
Can be used to expose potential attacks due to flows
involving humans. Threats to consider:

Missing information
Distracting information
Underspecified elements
Fuzzy comparison: Quick, make sure that

f51c0904ec22a44453dd1651 == f51c0904ec22a24453dd1651

Ceremonies
Explicitly model users’ role(s) in protocols
Can be used to expose potential attacks due to flows
involving humans. Threats to consider:

Missing information

Distracting information

Underspecified elements

f51c0904ec22a44453dd1651 ==

f51c0904ec22a24453dd1651

Ceremony example (Ellison)

Source: [Ellison, 2007] via Shostack

Human models

A mental/emotional state machine can help explain
user reactions.

Related to “Cognitive Walkthrough” technique for
pre-user study evaluation of interfaces (soon)

Human model (example)

Source: Shostack Figure 15-4

Cognitive walkthrough

“Walk through” a task, at each step attempting to answer
the questions:

“Can a user identify the right next step?”

“How will the user know they did the right thing?”

Record reactions at each step of the process.

Example: block a site from using JavaScript in Chrome.

Cognitive walkthrough

“Walk through” a task, at each step attempting to answer
the questions:

“Can a user identify the right next step?”

“How will the user know they did the right thing?”

Record reactions at each step of the process.

Example: block a site from using JavaScript in Chrome.

Building effective mitigations

Non-productive myths:

“People will choose dancing pigs every time.”

“People don’t care about security”

“People just don’t listen”

“My mom couldn’t understand that”



Building effective mitigations

Non-productive myths:

“People will choose dancing pigs every time.”

“People don’t care about security”

“People just don’t listen”

“My mom couldn’t understand that”

Building effective mitigations

Non-productive myths:

“People will choose dancing pigs every time.”

“People don’t care about security”

“People just don’t listen”

“My mom couldn’t understand that”

Building effective mitigations

Non-productive myths:

“People will choose dancing pigs every time.”

“People don’t care about security”

“People just don’t listen”

“My mom couldn’t understand that”

Building effective mitigations

Non-productive myths:

“People will choose dancing pigs every time.”

“People don’t care about security”

“People just don’t listen”

“My mom couldn’t understand that”

Good decisions: design patterns (1)

Minimize what you ask of people

Make a list: what do they need to know? How will
they find out?

Be consistent: treat similar situations with similar
requests, use the same interface, etc.

Force people to complete important steps

Like stepping on the brake to start a car; make it
easier to do the safe thing than avoid it altogether.

Good decisions: design patterns (1)

Minimize what you ask of people

Make a list: what do they need to know? How will
they find out?

Be consistent: treat similar situations with similar
requests, use the same interface, etc.

Force people to complete important steps

Like stepping on the brake to start a car; make it
easier to do the safe thing than avoid it altogether.

Good decisions: design patterns (2)

Avoid urgency
No links in emails, always ask to use the app or a
bookmark.
Never require users to “opt out” of a change.

Easy path to safety
Make all communication available through the app or
account
Remind users about this at login and in emails

Good decisions: design patterns (2)

Avoid urgency
No links in emails, always ask to use the app or a
bookmark.
Never require users to “opt out” of a change.

Easy path to safety
Make all communication available through the app or
account
Remind users about this at login and in emails



Kind(er) environment

No “scamicry”

Communicate through known, trusted channels only

No urgent callbacks, no emails with links

Never start with a request for personal data

Give good advice
Realistic

Memorable

Concise

Durable

Proved effective

Consistent

Kind(er) environment

No “scamicry”

Communicate through known, trusted channels only

No urgent callbacks, no emails with links

Never start with a request for personal data

Give good advice
Realistic

Memorable

Concise

Durable

Proved effective

Consistent

Outline

Review: what we’re building

Announcements intermission

General best practices

Bonus: DNSSEC and ceremonies

DNSSEC goals and non-goals

+ Authenticity of positive replies

+ Authenticity of negative replies

+ Integrity

- Confidentiality

- Availability

First cut: signatures and certificates

Each resource record gets an RRSIG signature
E.g., A record for one name!address mapping
Observe: signature often larger than data

Signature validation keys in DNSKEY RRs

Recursive chain up to the root (or other “anchor”)

Add more indirection

DNS needs to scale to very large flat domains like
.com

Facilitated by having single DS RR in parent indicating
delegation

Chain to root now includes DSes as well

Negative answers

Also don’t want attackers to spoof non-existence
Gratuitous denial of service, force fallback, etc.

But don’t want to sign “x does not exist” for all x

Solution 1, NSEC: “there is no name between acacia

and baobab”

Preventing zone enumeration

Many domains would not like people enumerating all
their entries

DNS is public, but “not that public”

Unfortunately NSEC makes this trivial

Compromise: NSEC3 uses password-like salt and
repeated hash, allows opt-out



DANE: linking TLS to DNSSEC

“DNS-based Authentication of Named Entities”

DNS contains hash of TLS cert, don’t need CAs

How is DNSSEC’s tree of certs better than TLS’s?

Deployment

Standard deployment problem: all cost and no
benefit to being first mover

Servers working on it, mostly top-down

Clients: still less than 40%

Will probably be common for a while: insecure
connection to secure resolver

Signing the root

Political problem: many already distrust US-centered
nature of DNS infrastructure

Practical problem: must be very secure with no
single point of failure
Finally accomplished in 2010

Solution involves key ceremonies, international
committees, smart cards, safe deposit boxes, etc.

Current state of root signing

Carefully designed ceremony managed by ICANN
with community participants

Happens quarterly in LA-area or Virginia data
centers

Key goals are transparency and avoiding single
points of failure or attack

Livestreamed on YouTube, coincidentally today


