
CSci 4271W
Development of Secure Software Systems

Day 22: Web security part 3: spoofing, tampering, and
information disclosure
Stephen McCamant (he/him)

University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Web applications

The browser sends a request to a server

The server processes this request, and sends a reply

The browser receives data and code

This may result in the need to send additional requests

Hypertext Transport Protocol

HTTP is a stateless request/response protocol

Clients send resource requests (usually GET, POST
or PUT)

Servers send responses (info/success/redirect/error)

Response bodies can reference additional resources

Most applications build stateful sessions on top of
HTTP

Embedded content

HTML documents can reference many other resources:

Style sheets – influence display of elements

Scripts – <script src="nextslide.js" />

Frames – include other pages

Images – loaded and displayed with separate
requests

Scripts

JavaScript embedded in a page runs in a sandbox but
can:

Manipulate page’s Document Object Model (DOM),
adding or removing elements
Make additional HTTP requests
Open windows, capture user input
Access page’s local storage
Interact with browser API

Security goals
Like OSes, browsers provide uniform resource access and attempt to
protect applications from each other.
The unit of protection is the “origin” (informally, “domain”)

Data associated with a page originating from domain A should not be
leaked to or altered by a page originating from domain B. (The
“same-origin policy”.)

Securing web sites

Securing web sites can be challenging for many reasons:

Sessions store (some) state at the client

Inputs come from unknown, untrusted sources

The statelessness of HTTP potentially allows replays,
modification, and injection of requests

Mutually untrusted applications may use the same
physical server

Outline

Review: web and security model

Spoofing attacks

Announcements intermission

Tampering and information disclosure

Spoofing: server to users

How does the user know they’ve reached
www.bank.com?

TLS! Certificates, UI like lock icons, . . .

Potential problems: mal-in-the-middle/sslstrip, stored
or reflected XSS, third-party embedded content

Spoofing: server to users

How does the user know they’ve reached
www.bank.com?

TLS! Certificates, UI like lock icons, . . .

Potential problems: mal-in-the-middle/sslstrip, stored
or reflected XSS, third-party embedded content

Spoofing: server to users

How does the user know they’ve reached
www.bank.com?

TLS! Certificates, UI like lock icons, . . .

Potential problems: mal-in-the-middle/sslstrip, stored
or reflected XSS, third-party embedded content

Spoofing: users to server
Many web sites store login cookies in browsers. Here are some
mistakes:

isn’t protected against forgery, e.g.
Set-cookie: user=admin&secret=456789

is protected with “roll-your-own” crypto:
Set-cookie: user=admin&tag=<username^0x5ec4e7>

doesn’t expire or is not tied to the current session:
Set-cookie: user=me&crypto=0xdeadbeef

contains only a counter-based session identifier:
Set-cookie: sessionid=12345

Spoofing: users to server
Many web sites store login cookies in browsers. Here are some
mistakes:

isn’t protected against forgery, e.g.
Set-cookie: user=admin&secret=456789

is protected with “roll-your-own” crypto:
Set-cookie: user=admin&tag=<username^0x5ec4e7>

doesn’t expire or is not tied to the current session:
Set-cookie: user=me&crypto=0xdeadbeef

contains only a counter-based session identifier:
Set-cookie: sessionid=12345

Spoofing: users to server
Many web sites store login cookies in browsers. Here are some
mistakes:

isn’t protected against forgery, e.g.
Set-cookie: user=admin&secret=456789

is protected with “roll-your-own” crypto:
Set-cookie: user=admin&tag=<username^0x5ec4e7>

doesn’t expire or is not tied to the current session:
Set-cookie: user=me&crypto=0xdeadbeef

contains only a counter-based session identifier:
Set-cookie: sessionid=12345

Spoofing: users to server
Many web sites store login cookies in browsers. Here are some
mistakes:

isn’t protected against forgery, e.g.
Set-cookie: user=admin&secret=456789

is protected with “roll-your-own” crypto:
Set-cookie: user=admin&tag=<username^0x5ec4e7>

doesn’t expire or is not tied to the current session:
Set-cookie: user=me&crypto=0xdeadbeef

contains only a counter-based session identifier:
Set-cookie: sessionid=12345

Spoofing: users to server
Many web sites store login cookies in browsers. Here are some
mistakes:

isn’t protected against forgery, e.g.
Set-cookie: user=admin&secret=456789

is protected with “roll-your-own” crypto:
Set-cookie: user=admin&tag=<username^0x5ec4e7>

doesn’t expire or is not tied to the current session:
Set-cookie: user=me&crypto=0xdeadbeef

contains only a counter-based session identifier:
Set-cookie: sessionid=12345

More spoofing risks: passwords

Password entry: unencrypted, digest auth.,
mixed-TLS

Password storage: cleartext, unsalted, encrypted vs.
hashed

Password recovery: “personal questions” are not.
Reset asks for email, or sends old password. . .

Password rate limits: attackers can try many leaked
pairs of username/password

More spoofing risks: passwords

Password entry: unencrypted, digest auth.,
mixed-TLS

Password storage: cleartext, unsalted, encrypted vs.
hashed

Password recovery: “personal questions” are not.
Reset asks for email, or sends old password. . .

Password rate limits: attackers can try many leaked
pairs of username/password

More spoofing risks: passwords

Password entry: unencrypted, digest auth.,
mixed-TLS

Password storage: cleartext, unsalted, encrypted vs.
hashed

Password recovery: “personal questions” are not.
Reset asks for email, or sends old password. . .

Password rate limits: attackers can try many leaked
pairs of username/password

More spoofing risks: passwords

Password entry: unencrypted, digest auth.,
mixed-TLS

Password storage: cleartext, unsalted, encrypted vs.
hashed

Password recovery: “personal questions” are not.
Reset asks for email, or sends old password. . .

Password rate limits: attackers can try many leaked
pairs of username/password

Spoofing mitigation

Protect all site pages with TLS, no external includes on login;
Use HSTS to pin TLS usage, and SCT for cert transparency

Use secure session manager software (long random session ids,
automatic expiration, weak password checks)

All should have issue or expire date, and secure crypto
authentication (HMAC, not hash) applied to full cookie.

No clear-text passwords. Password recovery via expiring,
crypto-protected email link.

Clickjacking

Attacker page includes victim page in frame (e.g. with
style “opacity:0”) to receive attracted user clicks.

Clickjacking

Attacker page includes victim page in frame (e.g. with
style “opacity:0”) to receive attracted user clicks.

Clickjacking defenses

Problematic: Referer headers

Also problematic: “frame busting”

<script>

if (self.location != top.location) {

top.location = self.location;

}

</script>

Best: Content-Security-Policy: frame-ancestors 'self';

Outline

Review: web and security model

Spoofing attacks

Announcements intermission

Tampering and information disclosure

Project 2 status
Grades and a modest amount of Project 1 feedback
were posted just before class

For fairness, nothing more will be posted until after
Monday’s one-time-extended deadline

Given the limits on the amount of feedback and the
time to work with it, our expectations about using
feedback in project 2 will be proportionately reduced

But still non-zero

You will have another opportunity to incorporate
feedback in project 3 (coming soon)

Outline

Review: web and security model

Spoofing attacks

Announcements intermission

Tampering and information disclosure

Parameter tampering

HTTP GET/POST params can be modified by attackers:

Never rely on client-side validation

“Drop downs” can be filled arbitrarily
Numbers can be negative, out of range, etc.
Pre-filled values can be altered

Hidden fields are not hidden from attackers who
know to look for them

Watch for repeat names in requests:
http://v.com/s?user=ape&pin=12345&user=admin

Parameter tampering

HTTP GET/POST params can be modified by attackers:
Never rely on client-side validation

“Drop downs” can be filled arbitrarily
Numbers can be negative, out of range, etc.
Pre-filled values can be altered

Hidden fields are not hidden from attackers who
know to look for them

Watch for repeat names in requests:
http://v.com/s?user=ape&pin=12345&user=admin

Parameter tampering

HTTP GET/POST params can be modified by attackers:
Never rely on client-side validation

“Drop downs” can be filled arbitrarily
Numbers can be negative, out of range, etc.
Pre-filled values can be altered

Hidden fields are not hidden from attackers who
know to look for them

Watch for repeat names in requests:
http://v.com/s?user=ape&pin=12345&user=admin

Parameter tampering

HTTP GET/POST params can be modified by attackers:
Never rely on client-side validation

“Drop downs” can be filled arbitrarily
Numbers can be negative, out of range, etc.
Pre-filled values can be altered

Hidden fields are not hidden from attackers who
know to look for them

Watch for repeat names in requests:
http://v.com/s?user=ape&pin=12345&user=admin

Parameter tampering

HTTP GET/POST params can be modified by attackers:
Never rely on client-side validation

“Drop downs” can be filled arbitrarily
Numbers can be negative, out of range, etc.
Pre-filled values can be altered

Hidden fields are not hidden from attackers who
know to look for them

Watch for repeat names in requests:
http://v.com/s?user=ape&pin=12345&user=admin

Parameter pollution
HTTP GET/POST parameters can be initialized by attackers and
reflected by server-side scripts

Check Mail

+

Subject 1...

Subject 2...

All GET/POST parameters must be validated
- before and after conversions
- against known-good patterns
- And if possible, not passed to foreign parsers

Parameter pollution
HTTP GET/POST parameters can be initialized by attackers and
reflected by server-side scripts

Check Mail

+

Subject 1...

Subject 2...

All GET/POST parameters must be validated
- before and after conversions
- against known-good patterns
- And if possible, not passed to foreign parsers

Parameter pollution
HTTP GET/POST parameters can be initialized by attackers and
reflected by server-side scripts

Check Mail

+

Subject 1...

Subject 2...

All GET/POST parameters must be validated
- before and after conversions
- against known-good patterns
- And if possible, not passed to foreign parsers

Parameter pollution
HTTP GET/POST parameters can be initialized by attackers and
reflected by server-side scripts

Check Mail

+

Subject 1...

Subject 2...

All GET/POST parameters must be validated
- before and after conversions
- against known-good patterns
- And if possible, not passed to foreign parsers

Cookie tampering

Cookies can also be modified/set/unset by attackers:

Set-Cookie: articlesLeft=4&0xcrypto

Set-Cookie: email="user@example.com"

Set-Cookie: NoPremium=true&0xcrypto

Store only data that can be validated or referenced on
server

Information disclosure
Very common bug: system generates outputs (bills, test
results, scores, teleconferences, price quotes,. . .)
sequentially, with links:

From: <billing-no-reply@v.com>

Your bill is now viewable at:

https://billing.v.com/view/123456.pdf

Also common: access control misconfigured, old pages
left in production, debug statements left on, hidden fields

Always require authentication for private data.

Information disclosure
Very common bug: system generates outputs (bills, test
results, scores, teleconferences, price quotes,. . .)
sequentially, with links:

From: <billing-no-reply@v.com>

Your bill is now viewable at:

https://billing.v.com/view/123456.pdf

Also common: access control misconfigured, old pages
left in production, debug statements left on, hidden fields

Always require authentication for private data.

Information disclosure
Very common bug: system generates outputs (bills, test
results, scores, teleconferences, price quotes,. . .)
sequentially, with links:

From: <billing-no-reply@v.com>

Your bill is now viewable at:

https://billing.v.com/view/123456.pdf

Also common: access control misconfigured, old pages
left in production, debug statements left on, hidden fields

Always require authentication for private data.

Directory traversal

Somewhat common pattern:

On server side, calls open("314.png")

Possible attacks:

- "...?file=../../../etc/passwd"

- "...?file=/web/images/../../../etc/passwd"

- "...?file=..%c0%af../../etc/passwd"

- "...?file=../../../etc/passwd%00.png"

Directory traversal

Somewhat common pattern:

On server side, calls open("314.png")

Possible attacks:

- "...?file=../../../etc/passwd"

- "...?file=/web/images/../../../etc/passwd"

- "...?file=..%c0%af../../etc/passwd"

- "...?file=../../../etc/passwd%00.png"

