
CSci 4271W
Development of Secure Software Systems

Day 20: Web security part 1: intro and privacy
Stephen McCamant (he/him)

University of Minnesota, Computer Science & Engineering

Based in large part on slides originally by Prof. Nick Hopper
Licensed under Creative Commons Attribution-ShareAlike 4.0

Web applications

The browser sends a request to a server

The server processes this request, and sends a reply

The browser receives data and code

This may result in the need to send additional requests

Web applications

The browser sends a request to a server

The server processes this request, and sends a reply

The browser receives data and code

This may result in the need to send additional requests

Web applications

The browser sends a request to a server

The server processes this request, and sends a reply

The browser receives data and code

This may result in the need to send additional requests

Hypertext Transport Protocol

HTTP is a stateless request/response protocol

Clients send resource requests (usually GET, POST
or PUT)

Servers send responses (info/success/redirect/error)

Response bodies can reference additional resources

Most applications build stateful sessions on top of
HTTP

Hypertext Transport Protocol

HTTP is a stateless request/response protocol

Clients send resource requests (usually GET, POST
or PUT)

Servers send responses (info/success/redirect/error)

Response bodies can reference additional resources

Most applications build stateful sessions on top of
HTTP

Hypertext Transport Protocol

HTTP is a stateless request/response protocol

Clients send resource requests (usually GET, POST
or PUT)

Servers send responses (info/success/redirect/error)

Response bodies can reference additional resources

Most applications build stateful sessions on top of
HTTP

Hypertext Transport Protocol

HTTP is a stateless request/response protocol

Clients send resource requests (usually GET, POST
or PUT)

Servers send responses (info/success/redirect/error)

Response bodies can reference additional resources

Most applications build stateful sessions on top of
HTTP

Hypertext Transport Protocol

HTTP is a stateless request/response protocol

Clients send resource requests (usually GET, POST
or PUT)

Servers send responses (info/success/redirect/error)

Response bodies can reference additional resources

Most applications build stateful sessions on top of
HTTP

HTTP GET request example

HTTP GET response example One kind of session

Using GET method:

Application on server tracks changes to session

One kind of session

Using GET method:

Application on server tracks changes to session

One kind of session

Using GET method:

Application on server tracks changes to session

One kind of session

Using GET method:

Application on server tracks changes to session

One kind of session

Using GET method:

Application on server tracks changes to session

Cookies

Are the most prominent example of local storage

Local storage allows web applications to store some
session state with the client.

Cookies

Are the most prominent example of local storage

Local storage allows web applications to store some
session state with the client.

Cookies

Are the most prominent example of local storage

Local storage allows web applications to store some
session state with the client.

Cookies

Are the most prominent example of local storage

Local storage allows web applications to store some
session state with the client.

Embedded content

HTML documents can reference many other resources:

Style sheets – influence display of elements

Scripts – <script src="nextslide.js" />

Frames – include other pages

Images – loaded and displayed with separate
requests

Scripts

JavaScript embedded in a page runs in a sandbox but
can:

Manipulate page’s Document Object Model (DOM),
adding or removing elements
Make additional HTTP requests
Open windows, capture user input
Access page’s local storage
Interact with browser API

Security goals
Like OSes, browsers provide uniform resource access and attempt to
protect applications from each other.
The unit of protection is the “origin” (informally, “domain”)

Data associated with a page originating from domain A should not be
leaked to or altered by a page originating from domain B. (The
“same-origin policy”.)

Example: https://z.umn.edu/twostop

Select “Network” tab in Chrome Developer Tools, then
click on CSCI current term.

What is the IP address of the server?
What webserver application is running on the server?
What cookies are set?
How many script objects are included? CSS?
What line is the table of classes on?
What HTTP method does the subject/term form use?

Outline

Web basics and security model

Announcements intermission

Web privacy vs. tracking

Assignments, other logistics

Project 2 section drafts are due tonight

Project 2 reports are due next Tuesday
Gradescope and Canvas entries for both exist now

Project 1 feedback coming ASAP

Final exam location confirmed: same as lectures and
midterms

Saturday May 10th, 4–6pm, 3-115 Keller Hall

Outline

Web basics and security model

Announcements intermission

Web privacy vs. tracking

Tracking

One threat to users is tracking: “data brokers” collect
user “profiles” from pages visited, location, etc.
This info is then used to target ads, extract more sales,
sold to other companies, etc.

Web bugs

One tracking mechanism is the “web bug”: a.com pages
cause the browser to send a request to nosy.biz

<iframe src=... />

Also common in a 1-pixel by 1-pixel size.

CSS and history

<style type="text/css">

body {font-family: sans-serif;}

a.test1:visited {background-image:url('test1.png');}

a.test2:visited {background-image:url('test2.png');}

</style>

<body>

</body>

Cookies for tracking

Setting unique cookies per browser allows servers to:

Track clients across networks

Record location history

Track across web sites (helped by referrer headers)

Cache cookies (1)

A tracking mechanism based on storing data in the browser’s cache.

Cache cookies (2)

A tracking mechanism based on storing data in the browser’s cache.

Example: https://www.cnn.com

Select “Network” tab in Chrome Developer Tools, then
pick a story.

What request headers are set?

What security-relevant response headers are set?

How many script objects are included? CSS?

Countermeasures

DNT: 1 (from “do not track”) was a proposed voluntary
anti-tracking HTTP header. There was never sufficient
agreement for it to be effective.

Extensions: AdBlock+, NoScript, RequestPolicy, Ghostery,
PrivacyBadger

“Private Browsing” and “Guest” modes isolate browser
state. Guest mode usually provides more isolation.

