
CSci 4271W (011 and 012 sections) Lab Instructions

Lab 6 March 3rd, 2025

Ground Rules. You may choose to complete this lab in a group of up to three students. Before
you leave the lab, make sure you have submitted to Gradescope, you included all group
members on the submission, and the autograder found all required files!

1 Using docker for projects, homeworks, and labs

In lecture 12 tomorrow, we will address the topic of isolation, the mechanisms by which an operating
system prevents one process (running program) from accessing the resources of another process.
Modern operating systems provide a wider variety of isolation concepts beyond the process, in-
cluding mandatory access controls, sandboxing, containers, and virtualization. Full virtualization
creates a “virtual machine” like the ones we are using for the lab, with its own operating system,
disk, and so on. Containers also provide a virtual-machine-like abstraction but share a single kernel
with other containers and processes on the host, reducing the overhead of running multiple OSes.
In this lab, we’ll get a feel for Docker, which is the most popular application for creating and
managing containers.

2 Install Docker

Log in to your VM, and download and run the installation script for this lab:

$ git clone https://github.umn.edu/badlycoded/dockerlab.git

$ cd dockerlab

$ sh ./get-docker.sh

This will download and install the docker packages, and configure docker to use the cselabs
HTTP proxy. You may be asked if you want to continue the installation with a [Y/n] prompt a few
times; alway choose “y”. This script also configures docker so that it can be run by an “ordinary”
user, by creating and adding users to the “docker” group. To avoid needing to logout and back in,
the newgrp command starts a shell with the updated group membership:

$ newgrp docker

Now we should be ready to run docker commands, so try:

$ docker run hello-world

3 Docker tutorial

Docker has a “workshop” tutorial at https://docs.docker.com/get-started/workshop/. Let’s
work through Parts 1,2,4 and 5 of this tutorial to install the todo-app app as described. A few
changes will be required in order to make this tutorial work with the proxy setups on our VMs. Go
ahead and start by running the git clone command to download the source:

https://docker.com/
https://docs.docker.com/get-started/workshop/

$ git clone https://github.com/docker/getting-started-app.git

$ cd getting-started-app

This will put you in the correct directory for the remainder of the tutorial.
Second, in order to build the todo-app app, we will need to add some lines to the Dockerfile

created in Step 1 to configure programs that fetch packages from the Internet to use our proxy.
Before the WORKDIR line, we’ll add two extra ENV lines, so that the Dockerfile should look like
this:

syntax=docker/dockerfile:1

FROM node:lts-alpine

ENV http_proxy=http://proxy.oit.umn.edu:3128

ENV https_proxy=http://proxy.oit.umn.edu:3128

WORKDIR /app

COPY . .

RUN yarn install --production

CMD ["node", "src/index.js"]

EXPOSE 3000

In Step 2 of “Start an app container”, when the tutorial asks you to load the site in a browser,
you can use Firefox on the VM with X forwarding. If you haven’t already installed Firefox for
working on the project, you can run the following in your VM to install firefox. (The second
command is a persistent version of the workaround for X Windows authentication with snap):

$ sudo snap install firefox

$ echo ’export XAUTHORITY=$HOME/.Xauthority’ >> $HOME/.bashrc

Then run the following from a CSELabs terminal: (Note: this should also work from a personal
Mac or Linux machine, but if you’re using a Windows box, you may need to use VOLE for this
part. You might also prefer VOLE if you’re using an off campus network connection.)

$ ssh -X student@csel-xsme-s25-csci4271-NNN

student@csel-xsme-s25-csci4271-NNN:~$ firefox &

The window that pops up will be a bit laggy, but it’ll be a browser running on the VM that
can talk to the todo container.

Once you’ve completed Part 2, you can skip Part 3 (“Share the application”) as we won’t be
publishing Docker images in this class.

In Part 4: you’re probably not using “Git Bash” (it’s a Windows thing) so you can ignore the
notes about this section.

In Part 5, you do not need to “Verify that your getting-started-app directory is in a directory
defined in Docker Desktop’s file sharing setting.” (Step 1 under “Trying out Bind Mounts”) There’s
one additional change you’ll need to make; replace the command line to start the bind mounted
container with the following, analogous to the changes we made to the Dockerfile earlier:

$ docker run -dp 3000:3000 \
-w /app --mount type=bind,src="$(pwd)",target=/app \
-e "https_proxy=http://proxy.oit.umn.edu:3128" \
-e "http_proxy=http://proxy.oit.umn.edu:3128" \
node:18-alpine \
sh -c "yarn install && yarn run dev"

2

3.1 All done!

Once you’ve stopped the node:18-alpine container, you’ve finished all the steps the lab! For
this lab you’ll submit to gradescope the modified Dockerfile you created and the output of docker
image ls. To create a zipfile with the right contents, cd to your home directory on your vm and
run the following commands:

$ cp getting-started/app/Dockerfile .

$ docker image ls > docker-images

$ zip dockerlab.zip Dockerfile docker-images

Use scp to copy the dockerlab.zip file back to your lab machine, and then submit the file
to the Lab 6 assignment in Gradescope. Make sure you include all of your group members in the
submission!

Once you’ve submitted the file, the autograder will test the to make sure the proper file was
submitted, and notify you if it’s missing, within a few minutes. If you have the correct dockerfile
and images, you’ll receive full credit for the lab.

Congratulations, you’ve finished Lab 6! You might find it interesting and worthwhile to complete
steps 6-8 of the workshop, but we’re not requiring it for the lab.

3

	Using docker for projects, homeworks, and labs
	Install Docker
	Docker tutorial
	All done!

