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1 Discrete Fourier Transform — What is it?

1.1 General Interpolation Problem

Given a set of data yo,...,yan_1, we would like to interpolate it with the function
2N-1
Cb(x) = Z qubn(x)
n=0

satisfying the conditions
&(xm) = Ym, form=20,...,2N — 1.

The result is a linear system
2N—1

Z cn®n(T0) = Yo
27\/:—01
> adnlz1) = 0
n=0
2N-1
Z Cn®n(Tan—1) = Yon-1
n=0
or in matrix form ®c =y:
¢0($0) ¢1($0) T ¢2N—1($0) Co Yo
¢0($1) ¢1($1) T ¢2N—1($1) @] _ U1
¢0(1’;N—1) ¢1(5C2.N—1) ¢2N—1(.5C2N—1) CaN-—1 YaN-1

where the m,n-th entry in the matrix ® is ¢,(x,,) We will see later that we can write ¢ = Fy, with
F = ® ! has the same form as ® (up to scaling).



1.2 Discrete Fourier Transform
We make a particular choice for the knots z,, and functions ¢,,, for m,n =0,...,2N — 1. We use knots

. 2 2
Ty = 2TV = (o8 (%) + 7 sin (%), form=0,...,2N —1,

where i = v/—1. Letting w = e ?™/2N denote the 2N-th root of 1 in the complex plane, we note that
Ty = w ™ =WV where w?V = 1.

For functions ¢, we choose ¢,(x) = ﬁx", for n = 0,...,2N. We choose this scaling to match that
used in the text. Other than the scaling and the choice of knots, this looks like ordinary polynomial
interpolation.

For example, when 2N = 8, the system of equations becomes

w0 w? w0 W WO WO WO WO o Yo
w O wl w? ow? w?t wd wt W a1 Y1
w O w? w?t wb Wl Ww? w?t W Co Yo
w0 w? wt wl w?t wT w? wd s Y3
g I e e Y Y e AT e S e e cs = m (1)
w0 wt w? W w?t wt wt w3 cs Ys
w0 wb w?t w? Wl Wb Wt w2 o Ys
w0 wT wb WPt w?t W w? Wt cr Y7

where the values w™ lie equally spaced around the unit circle in the complex plane:

WO=wt =1
1 7T _ 1=
w w =5
w? w™o —1
3 -5 _ —l-i
w = w? = =
wt=wt = —1
5 -3 _ —l+i
w w =
W= w? = i
T 1 14
w' =w =




1.3 Solving system of equations

Normally the solution of a 2N x 2N system of equations requires some sort of elimination process, but in
this case the matrix involved has the special property that its conjugate transpose is almost its inverse.
Hence we can compute the DET of the sequence y = [yo, y1,...] by multiplying by a matrix of the same
special form as in equ. (1). For example, for 2N = 8, the DFT of y is

o W Wl Wl W W Wb WO WO Yo
c Wwowl w? W Wt W oWl W Y1
Co W w? owt Wb Wl w? oWt Wh Yo
_ || - pppe) = W' Wl Wb Wt Wt W W W | s
¢ = = (y) = 0 .4 0 4 .0 4 0 A4 (2)
4 W owt W oWt W0 oWt W w Ya
s W W w? W oWt Wt Wb W s
o W Wl oWt w? W W Wt WP Vs
cr W Wl Wl W oWt W Ww? Wl Y7

If we denote the matrix in the above equation (2) as Fg, the equations can be written can be written as

1 —
c=DFT(y) =Fony and y=IDFT(c)= WFQNC,

where O denotes the complex conjugate of O (elementwise if O is a matrix or vector).



1.4 What if initial data is all real?

If all the y’s are real, then the coefficients satisfy special properties. For example, in (2), rows 0 and 4 are
real, and the other rows are in complex conjugate pairs: 1 <> 7, 2 <+ 6, 3 <> 5. Hence the corresponding
entries in the DF'T vector ¢ will share these properties.

Formally, write the function ¢(z) as

2N—-1

¢(x) = copo(x) + Z Cndn () + endn (@) + Y ()
N N
= copo(x) + Z Cndn () + enon(x) + Z CoN—n®P2N—n(T))
n=1 n=1

N—1

= copo(x Z Cndn(x) + Con—nPon—n(T)] + cnON(T)

No1
- <Co + Z [cnt™ + con_pn®N "] + cNa:N> /(2N).

n=1

2N—n

SV = n (the complex conjugate of x7), so at the

At the knot z,, = w™™, we have the relation x, " = x
knots, we can write the above

O(Tm) = <c0 S 1cnx + con_nt,") + Ny, )/(2]\7)

n

,_.»—n

— <CO NZ:cnx + CoN-nTy,) + CNTp, )/(QN)

n=1

Also notice that xy = w™ = +1 is real.

So, in order for ¢(z) to be real at all the knots, the coefficients ¢y and ¢y must be real, and the the
remaining coefficients must satisfy cony_,, = ¢,, forn=1,... N — 1.

Under these conditions, we can split ¢, into its real and imaginary parts: ¢, = a, +1b, and use the identities
(with ¢ = a + ib, © = cos ) + isin, for some angle 1))

cx+¢x = (a+ib)(cost) +isiney) + (a —ib)(cosp —isin)
= 2acosy — 2bsin

and
n

o = (™)™ = cos nmy + i sin nmap

to write ¢(x,,) as a sum of all real entries:

n=1
N-—1

ap + ay cos(Nmap) +2 > a, cos(nmy)) — b, sin(nm¢)> /(2N).

n=1

() = (ao + anz + z_: (an + iby)x), + (a, — zb@ﬁ) /(2N)




2 Solve the linear system fast

First note that F/F = 2NT, where I denotes the identity matrix, and M denotes the conjugate transpose
of M. So solving the linear system (1/(2N)Fc =y is as easy as multiplying by F.
Second note that we can decompose F as follows. Since F is 2N x 2N, let us denote this matrix as Foy,
and denote by F the matrix obtained by solving the half-sized problem. Let D = DIAG{1,w,w?, ..., w71}
DFy

Then
Fy —DFy

is a column permutation of Foy (specifically the reverse of a perfect shuffle):

) = Fyy - column_shuffle

0,1,2,...,N—=1,N,...,2N=1] + [0,

0,2,4,...,2N=2,1,3,4,...,2N—1]
0,N,1,N+1,2, N+2,...,N—1,2N—1] + [0,1,2,..

. N—1,N,...,2N—1]

For example, for the DFT of a vector with 2N = 8 elements, we have the half-sized mapping:

WO Wb Wb WO 1 1 1 1
F, — W' w? oWt W 1 =i =1
SR IS T C N R (N IR R (R |
Wwowh Wt W2 1 ¢ -1 —i
and the diagonal scaling matrix:
w0 0 0 1 0 0 0
1 1-4
e I I e
w —1
0 0 0 w 0O 0 0 _\1/;
Then the full-sized Fg can be written in terms of the half-sized quantities:
WO W W0 WO W WO WO WO
WO ow? oWt WO Wt W Wb W
W owt W oWt w? Wb w? Wl
F, DF, W Wb wt W w? Wl W' WP
WO w? oWt WO WS W Wl WP
WO owt Wb Wt Wb w? Wb w?
WO oWl Wt W W Wb WP W

This means that multiplying a vector by Fg can be reduced to a perfect shuffle of the entries, two
multiplications by F,, and a diagonal scaling by D (4 multiplications). In general multiplying by Foy can
be reduced to 2 multiplications by Fy plus N multiplies in the diagonal scaling. If S(N) is the cost of
doing this for the N x N case, then we have the recurrence for the cost (assuming N = 2F):

S(2M1) = 2528 + N

whose solution is

S(N):S(Qk):%-?“-k::%-N-logzN.



3 DFT — What is it good for?

3.1 Convolution & Polynomial Multiplication
Let A = [ag,aq,...,a,] and B = [by, by, ..., b,| be two signals. The convolution A * B is

[a,ob(), a,obl—i—a,lb(), &ng+&1b1+a2b0, ambp].
Example: B is a smoothing filter: B = [1,2,1]. Then Ax B =
[ag, 2a0+ay, ag+2a1+ag, a1 +2as+as, . . . Gm—oF20m—140m, Qp—1420m, Q).

Example:
A=11,2,3,1,2,3,1,2,3] B=[1,2,1]

yields
AxB=11,4,8,9,7,8,9,7,8,8, 3]

(relatively smoother).
Let a(z) = ap+a1r+asz®+ - - - +a,2™ and b(x) = by+byx+boa*+ - - - +byar.
Then the coefficients of a(x) - b(z) are just the entries of A * B.



3.2 Fast Polynomial Multiplication

The product a(x) - b(z) has degree n+p so it is completely determined by its values at the n+p-+1 knots
Tg, ... Tpipt1- Choose the knots to be the n+p+1-th roots of unity on the unit circle. Then the vector
of values of a(xy) would be just the DFT([aq,...,a,,0,...,0]), and the vector of values b(x)) would be
just the DET([bo, ..., b,,0,...,0]). So we get

1 18.00 18.0 1.000 1 1
4 -3.59 -.31211 -3.0 -2.391 7744 -.49771 2 2
8 -2.64 -.2921i1 -1.1 -3.561 2939 -.64371 3 1
9 -1.91+.168i1 244 -4.461 -.061 -.42441 1 0
7 1 5173 -.55151 452-4.31 -.113 -.13041 2 0 1
DFT | 8 |- 1= 1.E-3-.01191 [ = | .077-591 | ® | -.019-5.E-3i | = DFT 3110 1 (3)
9 1.E-3+.0111 077 -.591 -.019+5E-3i 1 0
7 5173+4.5511 452 -4.351 -.113+.1301 2 0
8 -1.91 -.1688i 244-4.41 -.061+.4241 3 0
8 -2.64+.2921 -1.1-3.51 .2939+-.6431 0 0
3 -3.59+.3121 -3.0-2.31 744+ .4971 0 0

This is much faster with the DF'T, O(n+p) log(n+p) instead of O(np). This example is illustrated in Fig. 1.
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Figure 1: DFT example: diagram of convolution in equation (3), showing how the 1-2-1 kernel acts as a
smoother.



3.3 Convolution
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Figure 2: DFT example: diagram of convolution of a longer sequence, showing how the 1-2-1 kernel acts
as a smoother, how 1-4-6-4-1 acts as an even bogger smoother. The curve along the bottom shows the
magnitude of the DFT coefficients: the only ones that are non-zero are the coefficients in positions 0, 5,
10. Since there are N = 15 coefficients, position 10 is simply the reflection of position 5: 10 = N — 5, so
this shows the presence of only one frequency in the original sequence, plus a DC component.



3.4 Sample Basis Functions
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3.5 Filtering out Noise in a Noise Signal
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Noisy time domain signal
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Figure 5: Sample noisy signal: 50Hz+120Hz+noise. We show the original signal, its DFT, and its inverse

DFT after cleaning the DFT.
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