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1 Discrete Fourier Transform – What is it?

1.1 General Interpolation Problem

Given a set of data y0, . . . , y2N−1, we would like to interpolate it with the function

φ(x) =
2N−1
∑

n=0

cnφn(x)

satisfying the conditions
φ(xm) = ym, for m = 0, . . . , 2N − 1.

The result is a linear system
2N−1
∑

n=0

cnφn(x0) = y0

2N−1
∑

n=0

cnφn(x1) = y1

...
2N−1
∑

n=0

cnφn(x2N−1) = y2N−1

or in matrix form Φc = y:













φ0(x0) φ1(x0) · · · φ2N−1(x0)
φ0(x1) φ1(x1) · · · φ2N−1(x1)

...
...

...
φ0(x2N−1) φ1(x2N−1) · · · φ2N−1(x2N−1)























c0
c1
...

c2N−1











=













y0
y1
...

y2N−1













,

where the m,n-th entry in the matrix Φ is φn(xm) We will see later that we can write c = Fy, with
F = Φ−1 has the same form as Φ (up to scaling).
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1.2 Discrete Fourier Transform

We make a particular choice for the knots xm and functions φn, for m,n = 0, . . . , 2N − 1. We use knots

xm = e2πmi/2N = cos
(

2πm

2N

)

+ i sin
(

2πm

2N

)

, for m = 0, . . . , 2N − 1,

where i =
√
−1. Letting ω = e−2πi/2N denote the 2N -th root of 1 in the complex plane, we note that

xm = ω−m = ω2N−m, where ω2N = 1.
For functions φn we choose φn(x) = 1

2N
xn, for n = 0, . . . , 2N . We choose this scaling to match that

used in the text. Other than the scaling and the choice of knots, this looks like ordinary polynomial
interpolation.

For example, when 2N = 8, the system of equations becomes

1

8































ω−0 ω−0 ω−0 ω−0 ω−0 ω−0 ω−0 ω−0

ω−0 ω−1 ω−2 ω−3 ω−4 ω−5 ω−6 ω−7

ω−0 ω−2 ω−4 ω−6 ω−0 ω−2 ω−4 ω−6

ω−0 ω−3 ω−6 ω−1 ω−4 ω−7 ω−2 ω−5

ω−0 ω−4 ω−0 ω−4 ω−0 ω−4 ω−0 ω−4

ω−0 ω−5 ω−2 ω−7 ω−4 ω−1 ω−6 ω−3

ω−0 ω−6 ω−4 ω−2 ω−0 ω−6 ω−4 ω−2

ω−0 ω−7 ω−6 ω−5 ω−4 ω−3 ω−2 ω−1





























































c0
c1
c2
c3
c4
c5
c6
c7































=































y0
y1
y2
y3
y4
y5
y6
y7































(1)

where the values ωn lie equally spaced around the unit circle in the complex plane:
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ω7 = ω−1

ω6 = ω−2

ω5 = ω−3

ω4 = ω−4

ω3 = ω−5

ω2 = ω−6

ω1 = ω−7

ω0 = ω8

ω0 = ω8 = 1

ω1 = ω−7 = 1−i
√

2

ω2 = ω−6 = −i
ω3 = ω−5 = −1−i

√

2

ω4 = ω−4 = −1

ω5 = ω−3 = −1+i
√

2

ω6 = ω−2 = +i

ω7 = ω−1 = 1+i
√

2
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1.3 Solving system of equations

Normally the solution of a 2N × 2N system of equations requires some sort of elimination process, but in
this case the matrix involved has the special property that its conjugate transpose is almost its inverse.
Hence we can compute the DFT of the sequence y = [y0, y1, . . .] by multiplying by a matrix of the same
special form as in equ. (1). For example, for 2N = 8, the DFT of y is

c =































c0
c1
c2
c3
c4
c5
c6
c7































= DFT(y) =































ω0 ω0 ω0 ω0 ω0 ω0 ω0 ω0

ω0 ω1 ω2 ω3 ω4 ω5 ω6 ω7

ω0 ω2 ω4 ω6 ω0 ω2 ω4 ω6

ω0 ω3 ω6 ω1 ω4 ω7 ω2 ω5

ω0 ω4 ω0 ω4 ω0 ω4 ω0 ω4

ω0 ω5 ω2 ω7 ω4 ω1 ω6 ω3

ω0 ω6 ω4 ω2 ω0 ω6 ω4 ω2

ω0 ω7 ω6 ω5 ω4 ω3 ω2 ω1





























































y0
y1
y2
y3
y4
y5
y6
y7































(2)

If we denote the matrix in the above equation (2) as F8, the equations can be written can be written as

c = DFT(y) = F2Ny and y = IDFT(c) =
1

2N
F2Nc,

where ✷ denotes the complex conjugate of ✷ (elementwise if ✷ is a matrix or vector).
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1.4 What if initial data is all real?

If all the y’s are real, then the coefficients satisfy special properties. For example, in (2), rows 0 and 4 are
real, and the other rows are in complex conjugate pairs: 1 ↔ 7, 2 ↔ 6, 3 ↔ 5. Hence the corresponding
entries in the DFT vector c will share these properties.

Formally, write the function φ(x) as

φ(x) = c0φ0(x) +
N−1
∑

n=1

cnφn(x) + cNφN(x) +
2N−1
∑

n=N+1

cnφn(x))

= c0φ0(x) +
N−1
∑

n=1

cnφn(x) + cNφN(x) +
N−1
∑

n=1

c2N−nφ2N−n(x))

= c0φ0(x) +
N−1
∑

n=1

[cnφn(x) + c2N−nφ2N−n(x)] + cNφN(x)

=

(

c0 +
N−1
∑

n=1

[cnx
n + c2N−nx

2N−n] + cNx
N

)

/(2N).

At the knot xm = ω−m, we have the relation x−nm = x2N−n
m = xnm (the complex conjugate of xnm), so at the

knots, we can write the above

φ(xm) =

(

c0 +
N−1
∑

n=1

(cnx
n
m + c2N−nx

−n
m ) + cNx

N
m

)

/(2N)

=

(

c0 +
N−1
∑

n=1

(cnx
n
m + c2N−nxnm) + cNx

N
m

)

/(2N).

Also notice that xN = ω−N = ±1 is real.

So, in order for φ(x) to be real at all the knots, the coefficients c0 and cN must be real, and the the
remaining coefficients must satisfy c2N−n = c̄n, for n = 1, . . . , N − 1.

Under these conditions, we can split cn into its real and imaginary parts: cn = an+ibn and use the identities
(with c = a + ib, x = cosψ + i sinψ, for some angle ψ)

cx+ c̄x̄ = (a + ib)(cosψ + i sinψ) + (a− ib)(cosψ − i sinψ)
= 2a cosψ − 2b sinψ

and
xnm = (eimψ)n = cos nmψ + i sin nmψ

to write φ(xm) as a sum of all real entries:

φ(xm) =

(

a0 + aNx
N
m +

N−1
∑

n=1

(an + ibn)x
n
m + (an − ibn)xnm

)

/(2N)

=

(

a0 + aN cos(Nmψ) + 2
N−1
∑

n=1

an cos(nmψ)− bn sin(nmψ)

)

/(2N).
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2 Solve the linear system fast

First note that FHF = 2NI, where I denotes the identity matrix, and MH denotes the conjugate transpose

of M. So solving the linear system (1/(2N)Fc = y is as easy as multiplying by F.
Second note that we can decompose F as follows. Since F is 2N×2N , let us denote this matrix as F2N ,

and denote by FN the matrix obtained by solving the half-sized problem. LetD = diag{1, ω, ω2, . . . , ωN−1}.
Then

(

FN DFN

FN −DFN

)

= F2N · column shuffle

is a column permutation of F2N (specifically the reverse of a perfect shuffle):

[0, 1, 2, . . . , N−1, N, . . . , 2N−1] 7→ [0, 2, 4, . . . , 2N−2, 1, 3, 4, . . . , 2N−1]
[0, N, 1, N+1, 2, N+2, . . . , N−1, 2N−1] 7→[0, 1, 2, . . . , N−1, N, . . . , 2N−1]

For example, for the DFT of a vector with 2N = 8 elements, we have the half-sized mapping:

F4 =











ω0 ω0 ω0 ω0

ω0 ω2 ω4 ω6

ω0 ω4 ω0 ω4

ω0 ω6 ω4 ω2











=











1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i











and the diagonal scaling matrix:

D =











ω0 0 0 0
0 ω1 0 0
0 0 ω2 0
0 0 0 ω3











=











1 0 0 0
0 1−i

√

2
0 0

0 0 −i 0
0 0 0 −1−i

√

2











.

Then the full-sized F8 can be written in terms of the half-sized quantities:

(

F4 DF4

F4 −DF4

)

=































ω0 ω0 ω0 ω0 ω0 ω0 ω0 ω0

ω0 ω2 ω4 ω6 ω1 ω3 ω5 ω7

ω0 ω4 ω0 ω4 ω2 ω6 ω2 ω6

ω0 ω6 ω4 ω2 ω3 ω1 ω7 ω5

ω0 ω0 ω0 ω0 ω4 ω4 ω4 ω4

ω0 ω2 ω4 ω6 ω5 ω7 ω1 ω5

ω0 ω4 ω0 ω4 ω6 ω2 ω6 ω2

ω0 ω6 ω4 ω2 ω7 ω5 ω3 ω1































= F8 · column shuffle.

This means that multiplying a vector by F8 can be reduced to a perfect shuffle of the entries, two
multiplications by F4, and a diagonal scaling by D (4 multiplications). In general multiplying by F2N can
be reduced to 2 multiplications by FN plus N multiplies in the diagonal scaling. If S(N) is the cost of
doing this for the N ×N case, then we have the recurrence for the cost (assuming N = 2k):

S(2k+1) = 2S(2k) +N

whose solution is

S(N) = S(2k) =
1

2
· 2k · k =

1

2
·N · log2N.
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3 DFT – What is it good for?

3.1 Convolution & Polynomial Multiplication

Let A = [a0, a1, . . . , an] and B = [b0, b1, . . . , bp] be two signals. The convolution A ∗B is

[a0b0, a0b1+a1b0, a0b2+a1b1+a2b0, . . . ambp].

Example: B is a smoothing filter: B = [1, 2, 1]. Then A ∗B =

[a0, 2a0+a1, a0+2a1+a2, a1+2a2+a3, . . . am−2+2am−1+am, am−1+2am, am].

Example:
A = [1, 2, 3, 1, 2, 3, 1, 2, 3] B = [1, 2, 1]

yields
A ∗B = [1, 4, 8, 9, 7, 8, 9, 7, 8, 8, 3]

(relatively smoother).
Let a(x) = a0+a1x+a2x

2+ · · ·+amxm and b(x) = b0+b1x+b2x
2+ · · ·+bpxp.

Then the coefficients of a(x) · b(x) are just the entries of A ∗B.
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3.2 Fast Polynomial Multiplication

The product a(x) · b(x) has degree n+p so it is completely determined by its values at the n+p+1 knots
x0, . . . , xn+p+1. Choose the knots to be the n+p+1-th roots of unity on the unit circle. Then the vector
of values of a(xk) would be just the DFT([a0, . . . , an, 0, . . . , 0]), and the vector of values b(xk) would be
just the DFT([b0, . . . , bp, 0, . . . , 0]). So we get

DFT













































1
4
8
9
7
8
9
7
8
8
3














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(3)

This is much faster with the DFT, O(n+p) log(n+p) instead of O(np). This example is illustrated in Fig. 1.
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Figure 1: DFT example: diagram of convolution in equation (3), showing how the 1-2-1 kernel acts as a
smoother.
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3.3 Convolution

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  2  4  6  8  10  12  14

ORIGINAL
Smoothed 1-2-1

Smoothed 1-4-6-4-1
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Figure 2: DFT example: diagram of convolution of a longer sequence, showing how the 1-2-1 kernel acts
as a smoother, how 1-4-6-4-1 acts as an even bogger smoother. The curve along the bottom shows the
magnitude of the DFT coefficients: the only ones that are non-zero are the coefficients in positions 0, 5,
10. Since there are N = 15 coefficients, position 10 is simply the reflection of position 5: 10 = N − 5, so
this shows the presence of only one frequency in the original sequence, plus a DC component.
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3.4 Sample Basis Functions
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Figure 3: Sample Basis Functions: cosines in blue stars, sines in red circles

11



0 10 20 30 40 50 60 70
0

0.5
1

0

0 10 20 30 40 50 60 70
−0.5

0
0.5

1

0 10 20 30 40 50 60 70
−0.5

0
0.5

2

0 10 20 30 40 50 60 70
−0.5

0
0.5

3

0 10 20 30 40 50 60 70
−0.5

0
0.5

4

0 10 20 30 40 50 60 70
−0.5

0
0.5

5

0 10 20 30 40 50 60 70
−0.5

0
0.5

6

0 10 20 30 40 50 60 70
−0.5

0
0.5

7

0 10 20 30 40 50 60 70
−0.5

0
0.5

8

0 10 20 30 40 50 60 70
−0.5

0
0.5

9

0 10 20 30 40 50 60 70
−0.5

0
0.5

10

0 10 20 30 40 50 60 70
−0.5

0
0.5

11

0 10 20 30 40 50 60 70
−0.5

0
0.5

12

0 10 20 30 40 50 60 70
−0.5

0
0.5

13

0 10 20 30 40 50 60 70
−0.5

0
0.5

14

0 10 20 30 40 50 60 70
−0.5

0
0.5

15

0 10 20 30 40 50 60 70
−0.5

0
0.5

16

Figure 4: Discrete Fourier Transform (DFT) of Sample Basis Functions: transform of cosines in blue (all
real), transform of sines in green (real part, all zero) and red (imaginary part).
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3.5 Filtering out Noise in a Noise Signal
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Figure 5: Sample noisy signal: 50Hz+120Hz+noise. We show the original signal, its DFT, and its inverse
DFT after cleaning the DFT.
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