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5.2.7 Interpolation in Several Variables
and Bicubic Splines

The problem of interpolating in a two-way table is fairly common in many
engineering and scientific applications. Specifically if f(x, y) is a function of two
variables that has been tabulated at the points (x;, ¥),0 =i=n,0 = j = m, then
we can construct a two-way table that represents this information:

Xo X, 5 s X
Yo Sxos yo) f(xy, yo) A .f:(x'na Yo)
Y1 flxo, y1) Senyd .f(xm. yi)
.).’m f(-xl); ym) f(x1 » ym) T f(xn.s. ym.)

If we want to estimate f(x, y) at a point (%, ¥), which is not in the table, we are
faced with an interpolation problem. We will see momentarily that we can
construct a polynomial in x and y of the form

P, ) =3 S anxy”,
r=0 §=90
which satisfies p(x;, ¥)) = flx;, v, 0 = i = n, 0 = j = m. Given this result, we
can estimate f(x, y) at (x, 9) by f(x, ¥) = p(x, ).

A variation of the problem of interpolating in a two-way table is the prob-
lem of approximating a function f(x, y) of two variables; this problem is some-
times called *‘surface fitting.”” The graph of the function z = f(x, y) is a surface
in three-space, and we can ask for a simple function p(x, y) such that p(x, y) =
f(x, y). As an application, if we want the normal to the surface z = f(x, y) at the
point (x, ¥, f(x, ), we can estimate the normal by finding the normal to z =

plx, y).
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If we restrict our approximation problem and consider how we might ap-
proximate only functions f(x, y) that are defined over a rectangular region in
the xy-plane, then we can very easily extend our previous results for polyno-
mial and spline approximation. So for simplicity we consider how we can
approximate f(x, y) only for (x, y) in R where

R={x,y:a=x=b,c=y=d}

We first treat the problem of interpolating f(x, y) by polynomials in two vari-
ables and then consider the case of bicubic spline approximation. To begin,
suppose a < x, <x; <:<x,=handc =y, <y <<y, = d; and let 7, =
{(x;, ) : 0= i=n,0=j= m}; thatis,m,, 182 rectangular grid of (n + 1) (s + 1)
points in R. Given a function f(x, y), we would like to find a polynomial in two
variables, p(x, v), such that p(x;, y;) = f(x;, y;) for all (x;, y;) in the grid 7,,,,. Now
if we define @, by

n H

o = 100, Y)Y Liple, ) = > 2 ayx'y?, for all real ay},

, i=0j=0
then each p(x; y) has (n + 1)(m + 1) coefficients. We then hope that we could

choose these coefficients to satisfy the (n + 1)(m + 1) interpolation constraints
plx, y) = flx, v), 0=i=n,0=j=m.

Following the lines of one-variable polynomial interpolation in Section 5.2,
we define the Lagrange polynomials of two variables by

Cox, y) = GOELY), 0=i=n0=j=m

where #,(x) is given in (5.2) and Z,(y) is defined si_[nilarly for the points ¢ = y, <
y; < -+ <y, = d. Thus we have ¢(x,) = 8, and £(yr) = Oy and so (x,, ) =
1ifi = rand j = s; and €,(x,, y,) = 0 otherwise. From this we see that

m

"
plx, y) = 2 Zf(xi’ y€ifx, y)
i=0.i=0
is a polynomial in ®@,,, that interpolates f(x, y) on the set of points 7, and we
will call this form of p(x, y) the Lagrange form of the interpolating polynomial.
To see that p(x, y) is unique in ®,,,, suppose that g(x, y) in ®@,, satisfies

n m

q(xi, y;) = flx, ¥), 0 =i =n,0=j=m, where qlx, y) = £ I byx'y’. Let
us rewrite g(x, y) as =0 =0
n m ) no
glx, y) = S &Y by’ = 3 x'gly)
i=0 j=0 i=0
where

q{y) = E b;:a'yj-

i=0
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If we set y = y, for a fixed value of 5, 0 = 5 = m, then g(x, y,) interpolates f(x, y;)

at x = xy, Xy, - - -, Xs. Thus g(x, y,) is a polynomial only in x, and its coefficients
g v,) are uniquely determined (see Theorem 5.3) by the data f(x,, y,), f(x,, ¥s)
e S, V).

Knowing that each ¢,(y,) is determined uniquely by the data f(x;, y,), 0 =
i< n,0=<s=<m,we can show that the b, are also uniquely determined. If we
fix i and consider the system of (sn + 1) equations

q;(ys) = bitl + biiy.s; R bi-my.f.'n:v == n,

then it is clear that by, by, ..., by, are uniquely determined by ¢(vo)
¢i(yy)s - - ., gi{y,) since the coefficient matrix for the system is a Vander-
monde matrix. Thus we have shown that interpolation by p(x, y) is unique.

For computational purposes, it is frequently useful to express the intet-
polating- polynomial p(x, y) in the form

Pl ) = 3 LS Fl T = 3 ()

=0 i=0 i=0

where

i)

py) = E.f(xia YY),
i=0
As we noted before, p(y) is a one-variable polynomial (in y) interpolating f(x, y)
along the line x = x;, at the points (x;, Yo}, (xi» Yo} - - - » (x;, ¥,n). This means that
plx, ¥) can be built up using one-variable polynomial interpolation. For exam-
ple, p(x, ¥) is given by -

n
plk, §) =, €X)pdI).
i=10
From the expression above, p(x, y) = g(x) where g(x) is the polynomial inter-
polating the data o9, p1(3), . . ., pa(P), at the points x = x;, 0=<i=n.Toget
the values pi(»), we interpolate the data f(x;, ¥), 0 = j = m, by p{y) and

evaluate p;(y) at y = ¥.
This two-dimensional interpolation scheme can be rephrased thus.

1. For each fixed grid line x = x;, interpolate the data f(x;, y;) in the y-direction
at the knots vy, (s . - - » ¥m and evaluate the (one-variable) interpolating
polynomial p(y) aty = 3.

2. Interpolate the values po($), pi(3), . . . » pa(¥) in the x-direction at the
knots Xy, X1, . . - » X, and evaluate the (one-variable) interpolating polyno-
mial g(x) at x = . The result, g(¥), is equal to p(x, ¥).
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Figure 5.7 A wire-frame model illustrating the calculation p(x, ¥).

This algorithm can be illustrated as a *‘wire-frame’” model as in Fig. 5.7. We
also emphasize what is probably obvious: an algorithm to implement two-
ditnensional interpolation can be constructed from any routine for one-
dimensional interpolation. For step (1) above, we call a polynomial interpolator
(n + 1) times to obtain the values po(¥), p1(3), . - -, p.(3 and then call it once
more to get g(x) = p(x, ¥).

Writing p(x, y) in the form

ple, ) = 3 S Gy K, yi)
i={ i=10
makes it clear (see Fig. 5.7) that we could equally well construct one-
dimensional interpolators in the x-direction (at the grid lines y = y;), evaluate
these at x = &, and then pass a one-dimensional interpolator through these data
along the line x = % in the y-direction. In addition, from the form of p(x, y)
above, we see how to calculate quantities such as p,,(%, $). In particular, the
mixed partial p,,, is clearly given by

TH

Pty ) = S G T (e ).

=0 i=0
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Therefore,

P ) = S E@PI)

i=0
where

pi3) = S G (i 3.
i=0
By way of interpretation, we pass p,(y) through the data f(x,;, y;), 0 = j=m
(along the grid line x = x,), differentiate p,(y), and evaluate p;(y). Given the
values p;(¥), 0 = i = n, we pass g(x) through these values at the knots xy, X1,
..., x,, differentiate ¢(x), and evaluate ¢g'(%). The net result is
q'(jc) = Puxy (357 37) = fw(:;c’ 3’) '

An exactly analogous development can be given for spline interpolation. In
particular, a function S (x, y) is called a bicubic spline if §(x, y) is a cubic spline
in x for fixed y and a cubic spline in y for fixed x. The natural bicubic spline is
easiest to treat, and so we restrict our attention to it. As with two-variable
polynomial interpolation, we will see that a bicubic spline interpolator can be
built up from one-dimensional cubic spline interpolators. The wire-frame repre-
sentation in Fig. 5.7 is also valid for bicubic splines. We can run cubic spline
interpolators along the grid lines x = x;, through the data f(x;, y;) for 0 = j=m,

and then evaluate them at y = ¥. We then run a cubic spline interpolator along
y = ¥, through the values obtained above, and evaluate this cubic spline at x =
X.

To see that the construction described above is valid, we can use the idea
of a cardinal natural spline. Given the knots y,, yi, . - « » Ym, WE 52Y that §;(y) is
4 cardinal natural spline if S)(») is a natural cubic spline on knots vo, ¥4« « + s ¥m
and if S;(yx) = 8, 0 = k = m. Clearly, these cardinal natural splines always
exist; and if g(y) is a function defined on [ y,, v,.), then the natural cubic spline

interpolator for g(y) can be represented as

S(y) = 2 SinNg(yy)-
i=0
[Note that the sum of natural cubic splines is a natural cubic spline; so S(y) is
obviously the cubic spline interpolator for g(y); the form of the representation
is similar to the Lagrange form of the interpolating polynomial. ]
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‘Given the concept of a cardinal natural spline, it is easy to sec how to
construct a natural bicubic spline S(x, y). In particular, if S;(x), 0 =i = n,
denote the cardinal natural splines for x,, x,, . . . , Xp, and S:(y) denote the
cardinal natural splines for y,, vy, . . . , ¥, then

S0, ) =S S S)S 0 (xis v)
i=0 j=0
is a bicubic spline that interpolates f(x, y) on the grid ,,. As before, we can
write S(x, y) as

St ) = 3 S

where

Piy) = 2 S.i(y)f(xi: Yi)-
i=10
From the representation of S(x, y) above, we see that we can evaluate S(x, y)
and various partial derivatives of S(x, y) by repeatedly calling a one-
dimensional spline routine, (# + 1) times in the y-direction and then once in the
x-direction. [Note, we do not need to calculate S;(x) or S)(y).]

Bicubic spline approximation to functions f(x, y) are quite effective. A
number of applications should be evident; we can use these approximations to
estimate mixed partials, estimate normals to a surface, calculate approxima-
tions to surface area, etc. Finally, cardinal splines can be used to obtain
higher-dimensional analogs of cubic splines. Given f(x, y, z) to approximate

over a solid rectangular region that is gridded by (x;, y;, z), 0 = i = n, 0=j=m,
0 = k = ¢, we can form

Sy D=3 3 Y SIS v 20

i=0 =0 k=0

As before,

[
S, y, 2) = Y Si(2)Blx, y)
k=10
where B,(x, y) is the bicubic spline interpolator to f(x, y, z) at the level z = z,.
Again, the three-dimensional spline approximation to f(x, y, z) can be built up
by calling a one-dimensional spline routine repeatedly. To evaluate f(x, ¥, 2),
we call the routine (n + 2) times to get B,(x, ¥), a total of (£ - 1) (n + 2) calls. A
final call in the z-direction interpolating B.(%, ), 0 < k = ¢ will produce S(%, §,

2).

60f 6





