

5.2.7 Interpolation in Several Variables and Bicubic Splines

The problem of interpolating in a two-way table is fairly common in many engineering and scientific applications. Specifically if $f(x, y)$ is a function of two variables that has been tabulated at the points (x_i, y_j) , $0 \leq i \leq n$, $0 \leq j \leq m$, then we can construct a two-way table that represents this information:

	x_0	x_1	\cdots	x_n
y_0	$f(x_0, y_0)$	$f(x_1, y_0)$	\cdots	$f(x_n, y_0)$
y_1	$f(x_0, y_1)$	$f(x_1, y_1)$	\cdots	$f(x_n, y_1)$
\vdots	\vdots			\vdots
y_m	$f(x_0, y_m)$	$f(x_1, y_m)$	\cdots	$f(x_n, y_m)$

If we want to estimate $f(x, y)$ at a point (\hat{x}, \hat{y}) , which is not in the table, we are faced with an interpolation problem. We will see momentarily that we can construct a polynomial in x and y of the form

$$p(x, y) = \sum_{r=0}^n \sum_{s=0}^m a_{rs} x^r y^s,$$

which satisfies $p(x_i, y_j) = f(x_i, y_j)$, $0 \leq i \leq n$, $0 \leq j \leq m$. Given this result, we can estimate $f(x, y)$ at (\hat{x}, \hat{y}) by $f(\hat{x}, \hat{y}) \approx p(\hat{x}, \hat{y})$.

A variation of the problem of interpolating in a two-way table is the problem of approximating a function $f(x, y)$ of two variables; this problem is sometimes called "surface fitting." The graph of the function $z = f(x, y)$ is a surface in three-space, and we can ask for a simple function $p(x, y)$ such that $p(x, y) \approx f(x, y)$. As an application, if we want the normal to the surface $z = f(x, y)$ at the point $(\hat{x}, \hat{y}, f(\hat{x}, \hat{y}))$, we can estimate the normal by finding the normal to $z = p(x, y)$.

If we restrict our approximation problem and consider how we might approximate only functions $f(x, y)$ that are defined over a *rectangular* region in the xy -plane, then we can very easily extend our previous results for polynomial and spline approximation. So for simplicity we consider how we can approximate $f(x, y)$ only for (x, y) in R where

$$R = \{(x, y) : a \leq x \leq b, c \leq y \leq d\}.$$

We first treat the problem of interpolating $f(x, y)$ by polynomials in two variables and then consider the case of bicubic spline approximation. To begin, suppose $a \leq x_0 < x_1 < \dots < x_n \leq b$ and $c \leq y_0 < y_1 < \dots < y_m \leq d$; and let $\pi_{nm} = \{(x_i, y_j) : 0 \leq i \leq n, 0 \leq j \leq m\}$; that is, π_{nm} is a rectangular grid of $(n+1)(m+1)$ points in R . Given a function $f(x, y)$, we would like to find a polynomial in two variables, $p(x, y)$, such that $p(x_i, y_j) = f(x_i, y_j)$ for all (x_i, y_j) in the grid π_{nm} . Now if we define \mathcal{P}_{nm} by

$$\mathcal{P}_{nm} = \{p(x, y) \mid p(x, y) = \sum_{i=0}^n \sum_{j=0}^m a_{ij} x^i y^j, \text{ for all real } a_{ij}\},$$

then each $p(x, y)$ has $(n+1)(m+1)$ coefficients. We then hope that we could choose these coefficients to satisfy the $(n+1)(m+1)$ interpolation constraints $p(x_i, y_j) = f(x_i, y_j)$, $0 \leq i \leq n$, $0 \leq j \leq m$.

Following the lines of one-variable polynomial interpolation in Section 5.2, we define the Lagrange polynomials of two variables by

$$\ell_{ij}(x, y) = \ell_i(x) \tilde{\ell}_j(y), \quad 0 \leq i \leq n, 0 \leq j \leq m$$

where $\ell_i(x)$ is given in (5.2) and $\tilde{\ell}_j(y)$ is defined similarly for the points $c = y_0 < y_1 < \dots < y_m = d$. Thus we have $\ell_i(x_k) = \delta_{ik}$ and $\tilde{\ell}_j(y_k) = \delta_{jk}$; and so $\ell_{ij}(x_r, y_s) = 1$ if $i = r$ and $j = s$; and $\ell_{ij}(x_r, y_s) = 0$ otherwise. From this we see that

$$p(x, y) = \sum_{i=0}^n \sum_{j=0}^m f(x_i, y_j) \ell_{ij}(x, y)$$

is a polynomial in \mathcal{P}_{nm} that interpolates $f(x, y)$ on the set of points π_{nm} , and we will call this form of $p(x, y)$ the Lagrange form of the interpolating polynomial.

To see that $p(x, y)$ is unique in \mathcal{P}_{nm} , suppose that $q(x, y)$ in \mathcal{P}_{nm} satisfies $q(x_i, y_j) = f(x_i, y_j)$, $0 \leq i \leq n$, $0 \leq j \leq m$, where $q(x, y) = \sum_{i=0}^n \sum_{j=0}^m b_{ij} x^i y^j$. Let us rewrite $q(x, y)$ as

$$q(x, y) = \sum_{i=0}^n x^i \sum_{j=0}^m b_{ij} y^j = \sum_{i=0}^n x^i q_i(y)$$

where

$$q_i(y) = \sum_{j=0}^m b_{ij} y^j.$$

If we set $y = y_s$ for a fixed value of s , $0 \leq s \leq m$, then $q(x, y_s)$ interpolates $f(x, y_s)$ at $x = x_0, x_1, \dots, x_n$. Thus $q(x, y_s)$ is a polynomial only in x , and its coefficients $q_i(y_s)$ are uniquely determined (see Theorem 5.3) by the data $f(x_0, y_s), f(x_1, y_s), \dots, f(x_n, y_s)$.

Knowing that each $q_i(y_s)$ is determined uniquely by the data $f(x_i, y_s)$, $0 \leq i \leq n$, $0 \leq s \leq m$, we can show that the b_{ij} are also uniquely determined. If we fix i and consider the system of $(m + 1)$ equations

$$q_i(y_s) = b_{i0} + b_{i1}y_s + \dots + b_{im}y_s^m, \quad 0 \leq s \leq m,$$

then it is clear that $b_{i0}, b_{i1}, \dots, b_{im}$ are uniquely determined by $q_i(y_0), q_i(y_1), \dots, q_i(y_m)$ since the coefficient matrix for the system is a Vandermonde matrix. Thus we have shown that interpolation by $p(x, y)$ is unique.

For computational purposes, it is frequently useful to express the interpolating polynomial $p(x, y)$ in the form

$$p(x, y) = \sum_{i=0}^n \ell_i(x) \sum_{j=0}^m f(x_i, y_j) \tilde{\ell}_j(y) = \sum_{i=0}^n \ell_i(x) p_i(y)$$

where

$$p_i(y) = \sum_{j=0}^m f(x_i, y_j) \tilde{\ell}_j(y).$$

As we noted before, $p_i(y)$ is a one-variable polynomial (in y) interpolating $f(x, y)$ along the line $x = x_i$, at the points $(x_i, y_0), (x_i, y_1), \dots, (x_i, y_m)$. This means that $p(x, y)$ can be built up using one-variable polynomial interpolation. For example, $p(\hat{x}, \hat{y})$ is given by

$$p(\hat{x}, \hat{y}) = \sum_{i=0}^n \ell_i(\hat{x}) p_i(\hat{y}).$$

From the expression above, $p(\hat{x}, \hat{y}) = q(\hat{x})$ where $q(x)$ is the polynomial interpolating the data $p_0(\hat{y}), p_1(\hat{y}), \dots, p_n(\hat{y})$, at the points $x = x_i$, $0 \leq i \leq n$. To get the values $p_i(\hat{y})$, we interpolate the data $f(x_i, y_j)$, $0 \leq j \leq m$, by $p_i(y)$ and evaluate $p_i(y)$ at $y = \hat{y}$.

This two-dimensional interpolation scheme can be rephrased thus.

1. For each fixed grid line $x = x_i$, interpolate the data $f(x_i, y_j)$ in the y -direction at the knots y_0, y_1, \dots, y_m and evaluate the (one-variable) interpolating polynomial $p_i(y)$ at $y = \hat{y}$.
2. Interpolate the values $p_0(\hat{y}), p_1(\hat{y}), \dots, p_n(\hat{y})$ in the x -direction at the knots x_0, x_1, \dots, x_n and evaluate the (one-variable) interpolating polynomial $q(x)$ at $x = \hat{x}$. The result, $q(\hat{x})$, is equal to $p(\hat{x}, \hat{y})$.

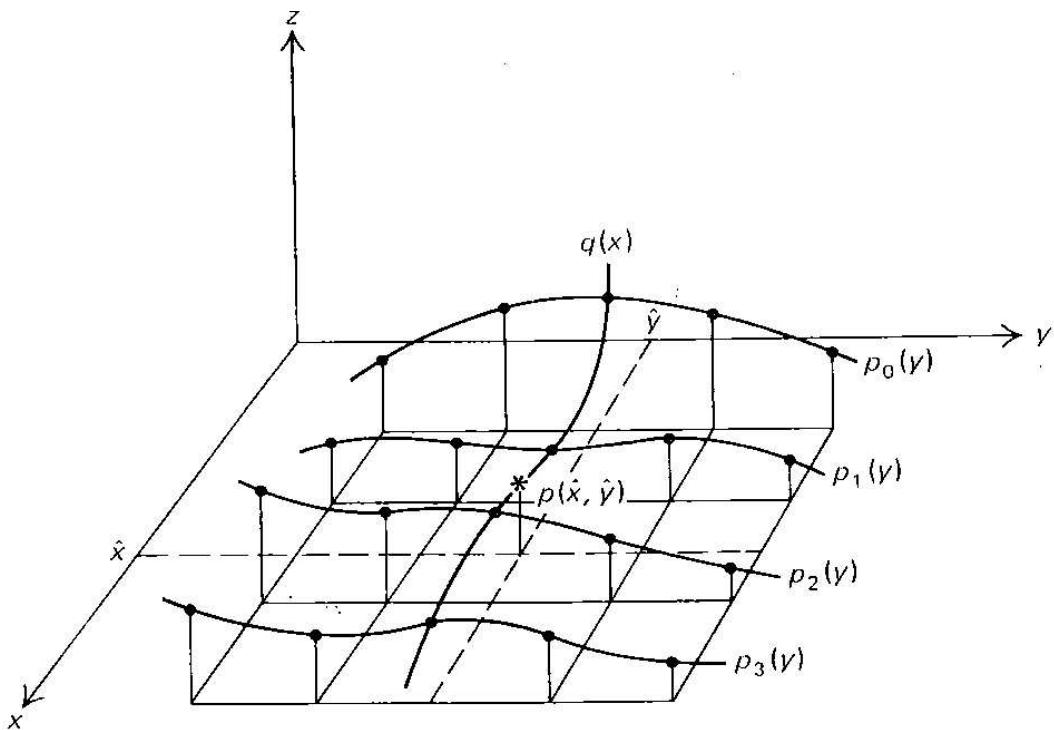


Figure 5.7 A wire-frame model illustrating the calculation $p(\hat{x}, \hat{y})$.

This algorithm can be illustrated as a “wire-frame” model as in Fig. 5.7. We also emphasize what is probably obvious: an algorithm to implement two-dimensional interpolation can be constructed from any routine for one-dimensional interpolation. For step (1) above, we call a polynomial interpolator $(n + 1)$ times to obtain the values $p_0(\hat{y}), p_1(\hat{y}), \dots, p_n(\hat{y})$ and then call it once more to get $q(\hat{x}) = p(\hat{x}, \hat{y})$.

Writing $p(x, y)$ in the form

$$p(x, y) = \sum_{i=0}^n \sum_{j=0}^m \ell_i(x) \tilde{\ell}_j(y) f(x_i, y_j)$$

makes it clear (see Fig. 5.7) that we could equally well construct one-dimensional interpolators in the x -direction (at the grid lines $y = y_j$), evaluate these at $x = \hat{x}$, and then pass a one-dimensional interpolator through these data along the line $x = \hat{x}$ in the y -direction. In addition, from the form of $p(x, y)$ above, we see how to calculate quantities such as $p_{xy}(\hat{x}, \hat{y})$. In particular, the mixed partial p_{xy} is clearly given by

$$p_{xy}(x, y) = \sum_{i=0}^n \ell'_i(x) \sum_{j=0}^m \tilde{\ell}'_j(y) f(x_i, y_j).$$

Therefore,

$$p_{xy}(\hat{x}, \hat{y}) = \sum_{i=0}^n \ell'_i(\hat{x}) p'_i(\hat{y})$$

where

$$p'_i(\hat{y}) = \sum_{j=0}^m \tilde{\ell}'_j(\hat{y}) f(x_i, y_j).$$

By way of interpretation, we pass $p_i(y)$ through the data $f(x_i, y_j)$, $0 \leq j \leq m$ (along the grid line $x = x_i$), differentiate $p_i(y)$, and evaluate $p'_i(\hat{y})$. Given the values $p'_i(\hat{y})$, $0 \leq i \leq n$, we pass $q(x)$ through these values at the knots x_0, x_1, \dots, x_n , differentiate $q(x)$, and evaluate $q'(\hat{x})$. The net result is $q'(\hat{x}) = p_{xy}(\hat{x}, \hat{y}) = f_{xy}(\hat{x}, \hat{y})$.

An exactly analogous development can be given for spline interpolation. In particular, a function $S(x, y)$ is called a *bicubic spline* if $S(x, y)$ is a cubic spline in x for fixed y and a cubic spline in y for fixed x . The natural bicubic spline is easiest to treat, and so we restrict our attention to it. As with two-variable polynomial interpolation, we will see that a bicubic spline interpolator can be built up from one-dimensional cubic spline interpolators. The wire-frame representation in Fig. 5.7 is also valid for bicubic splines. We can run cubic spline interpolators along the grid lines $x = x_i$, through the data $f(x_i, y_j)$ for $0 \leq j \leq m$, and then evaluate them at $y = \hat{y}$. We then run a cubic spline interpolator along $y = \hat{y}$, through the values obtained above, and evaluate this cubic spline at $x = \hat{x}$.

To see that the construction described above is valid, we can use the idea of a *cardinal* natural spline. Given the knots y_0, y_1, \dots, y_m , we say that $S_j(y)$ is a cardinal natural spline if $S_j(y)$ is a natural cubic spline on knots y_0, y_1, \dots, y_m and if $S_j(y_k) = \delta_{jk}$, $0 \leq k \leq m$. Clearly, these cardinal natural splines always exist; and if $g(y)$ is a function defined on $[y_0, y_m]$, then the natural cubic spline interpolator for $g(y)$ can be represented as

$$S(y) = \sum_{j=0}^m S_j(y) g(y_j).$$

[Note that the sum of natural cubic splines is a natural cubic spline; so $S(y)$ is obviously the cubic spline interpolator for $g(y)$; the form of the representation is similar to the Lagrange form of the interpolating polynomial.]

Given the concept of a cardinal natural spline, it is easy to see how to construct a natural bicubic spline $S(x, y)$. In particular, if $S_i(x)$, $0 \leq i \leq n$, denote the cardinal natural splines for x_0, x_1, \dots, x_n , and $\tilde{S}_j(y)$ denote the cardinal natural splines for y_0, y_1, \dots, y_m , then

$$S(x, y) = \sum_{i=0}^n \sum_{j=0}^m S_i(x) \tilde{S}_j(y) f(x_i, y_j)$$

is a bicubic spline that interpolates $f(x, y)$ on the grid π_{nm} . As before, we can write $S(x, y)$ as

$$S(x, y) = \sum_{i=0}^n S_i(x) \phi_i(y)$$

where

$$\phi_i(y) = \sum_{j=0}^m \tilde{S}_j(y) f(x_i, y_j).$$

From the representation of $S(x, y)$ above, we see that we can evaluate $S(x, y)$ and various partial derivatives of $S(x, y)$ by repeatedly calling a one-dimensional spline routine, $(n + 1)$ times in the y -direction and then once in the x -direction. [Note, we do not need to calculate $S_i(x)$ or $\tilde{S}_j(y)$.]

Bicubic spline approximation to functions $f(x, y)$ are quite effective. A number of applications should be evident; we can use these approximations to estimate mixed partials, estimate normals to a surface, calculate approximations to surface area, etc. Finally, cardinal splines can be used to obtain higher-dimensional analogs of cubic splines. Given $f(x, y, z)$ to approximate over a solid rectangular region that is gridded by (x_i, y_j, z_k) , $0 \leq i \leq n$, $0 \leq j \leq m$, $0 \leq k \leq \ell$, we can form

$$S(x, y, z) = \sum_{i=0}^n \sum_{j=0}^m \sum_{k=0}^{\ell} S_i(x) \tilde{S}_j(y) S_k^*(z) f(x_i, y_j, z_k).$$

As before,

$$S(x, y, z) = \sum_{k=0}^{\ell} S_k^*(z) B_k(x, y)$$

where $B_k(x, y)$ is the bicubic spline interpolator to $f(x, y, z)$ at the level $z = z_k$. Again, the three-dimensional spline approximation to $f(x, y, z)$ can be built up by calling a one-dimensional spline routine repeatedly. To evaluate $f(\hat{x}, \hat{y}, \hat{z})$, we call the routine $(n + 2)$ times to get $B_k(\hat{x}, \hat{y})$, a total of $(\ell + 1)(n + 2)$ calls. A final call in the z -direction interpolating $B_k(\hat{x}, \hat{y})$, $0 \leq k \leq \ell$ will produce $S(\hat{x}, \hat{y}, \hat{z})$.