
CSci 4271W
Development of Secure Software Systems

Day 25: AI safety threat modeling, XZ/SSH backdoor
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

AI safety threat modeling

Announcements intermission

The XZ/SSH backdoor

More crypto failures

DNSSEC

Kinds of AI safety concerns

AI failure and misuse: present-day negative
consequences of AI not being smart enough, or
being used by adversarial people

AI alignment: long-term risks of AI behavior being
inconsistent with human values

Business and social context

Recent advances in AI are novel software being
driven by big tech companies
Short-term concern is showcasing the technology as
useful and low-risk

Worthy of future investment but only light regulation

The reading is a whitepaper from OpenAI around the
time GPT-4 was released

Incentives to not leave risks out, but make them seem
manageable

Normal security concerns

Companies deploying LLMs have most of the normal
security concerns

E.g., running a large public web site

For commercial providers, keeping the models secret
is a critical requirement

Relevance of threat modeling

For AI-specific concerns, the main intersection with
security is thinking about adversarial threats
Main adversaries are:

Malicious users (short term)
Rogue AIs (longer term)

Unwanted/harmful content

“Unwanted” for generative AI covers both:
Unwanted by the user: not following directions
Unwanted by the provider: fulfilling user requests would
harm third parties or damage the provider’s reputation

Exemplary harms from a chatbot

Facilitating disinformation and political influence
Avoid things social media platforms have been criticized
for

Facilitating development of weapons
E.g., help an individual or low-resource group build a
biological weapon
Support going beyond web search results



LLMs in computer security

Lowest-hanging fruit is augmenting social
engineering
What about finding security bugs?

Dual use between defenders and attackers
Not yet very effective, interesting cases are harder than
other code-support tasks
But could be a cause of a high-profile harmful incident

Emergent risks

Scaling LLMs have often shown novel capabilities
Which ones are most concerning in amplifying AI risk?

Planning, pursuing goals (positive applications too)

Self-replication (e.g., compare computer worm)

Real world influence and deception
Example: TaskRabbit to solve a CAPTCHA

Medium-term concerns

Economic disruption
E.g., widespread job losses and unemployment

Acceleration: positive feedback increasing the rate
of AI development

Reckless competition towards AI goals
AI facilitating science and technological development

Some reasons alignment is hard

Humans already can’t agree among themselves on
universal values

Human desires have a lot of implicit side conditions
and unstated restrictions

We don’t understand many details of how LLMs
work internally

If AIs become smarter than people, why would they
want to obey us?

Hypothetical endpoints

Paperclip maximizer
Seemingly simple goal + great capability = deeply
undesirable result

Will super-human AIs treat humans the way humans
have treated non-human animals?

Extreme loss of agency is possible without destruction
Many different example animals and possible perspectives
Too close of an analogy may be unrealistic, since AI may
be much less like us than animals are

Precaution and p(doom)

A trending conversation topic is comparing
estimates on the probability of a catastrophic
outcome from AI
Surprisingly many people working in AI have a
significant p(doom)

Progress is inevitable, or it would be worse without me

Choosing not to pursue technology because of
downside risks is rare

Compare: nuclear weapons and energy

Outline

AI safety threat modeling

Announcements intermission

The XZ/SSH backdoor

More crypto failures

DNSSEC

Midterm 2 grade statistics

<5 | *

5 | 02334668999

6 | 124556667778999

7 | 001122223444567799

8 | 001123344667899

9 | 1234

Mean: 69.99, Median: 71

There is a +10 points difficulty adjustment on Canvas



Outline

AI safety threat modeling

Announcements intermission

The XZ/SSH backdoor

More crypto failures

DNSSEC

When “fun” is also scary

Security vulnerabilities and attacks are interesting to
hear about when they:

Had high impact
Use clever or unusual techniques

These can also be worrying bad news about the
overall state of security

One-slide overview

Maliciously-added code was recently discovered in
the XZ-Utils compression package use on Linux
systems

When the affected library was loaded by OpenSSH, it
opened a “backdoor” to allow login using an
embedded key

The problem was found only after it had started
being incorporated into major Linux distributions

Context of the changes

XZ-Utils provides the xz high-ratio compression tool
and a matching liblzma library

Relatively small and un-glamorous, with one long-term
primary maintainer

The backdoored changes were supplied by a
developer JiaT75 who started contributing in 2021

Common to have rancorous email exchanges with
no more direct communication

Contents of the changes

Random-looking “compression test files” actually had
hidden x86-64 code

Only these were in the regular Git repository

Backdoor was incorporated only conditionally for the
.tar.gz release

Various checks performed by obfuscated and encrypted
Makefiles and shell scripts

Backdoor functionality

Back door triggered when the affected library was
dynamically linked in the OpenSSH server

Modified RSA signature checking looks for an elliptic
curve signature hidden inside the RSA modulus (e.g.,
of an OpenSSH certificate)

If matched, the payload is passed to system

Integration story

SSH isn’t supposed to use LZMA compression, and
the standard OpenSSH version doesn’t

Major Linux distributions had patched SSH to
integrate login notifications with systemd

Easiest way was to link with a systemd library,
which linked with liblzma for other functionality

In hindsight, these dependencies can be removed

Function replacement mechanism

Runtime function replacement uses a GNU ELF
variant feature named IFUNC (indirect functions)

Benign use is to switch implementations of a
function (e.g., using different CPU feature) without an
extra function pointer layer

The GNU C Library is normally the main user



Who was JiaT75?

In short: we don’t really know

Likely an assumed name
No traces found outside open source
Some other identities in conversations seem to be sock
puppets

Not impossible to be a single impressive and
motivated individual

But a coordinated group seems more likely

Outline

AI safety threat modeling

Announcements intermission

The XZ/SSH backdoor

More crypto failures

DNSSEC

WEP “privacy”

First WiFi encryption standard: Wired Equivalent
Privacy (WEP)

F&S: designed by a committee that contained no
cryptographers
Problem 1: note “privacy”: what about integrity?

Nope: stream cipher + CRC = easy bit flipping

WEP shared key

Single key known by all parties on network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes hours
Worse: random or everyone starts at zero

WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key, similar IV)
First stream bytes used

Not such a problem for other RC4 users like SSL
Key from a hash, skip first output bytes

Newer problem with WPA (CCS’17)

Session key set up in a 4-message handshake

Key reinstallation attack: replay #3
Causes most implementations to reset nonce and replay
counter
In turn allowing many other attacks
One especially bad case: reset key to 0

Protocol state machine behavior poorly described in
spec

Outside the scope of previous security proofs

Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by your
adversary

In a public spec, most worrying are unexplained
elements

Best practice: choose constants from well-known
math, like digits of �



Dual EC DRBG (1)

Pseudorandom generator in NIST standard, based on
elliptic curve

Looks like provable (slow enough!) but strangely no
proof

Specification includes long unexplained constants

Academic researchers find:
Some EC parts look good
But outputs are statistically distinguishable

Dual EC DRBG (2)

Found 2007: special choice of constants allows
prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to US govt.
FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed by Snowden leaks
NIST and RSA immediately recommend withdrawal

Outline

AI safety threat modeling

Announcements intermission

The XZ/SSH backdoor

More crypto failures

DNSSEC

DNS: trusted but vulnerable

Almost every higher-level service interacts with DNS

UDP protocol with no authentication or crypto
Lots of attacks possible

Problems known for a long time, but challenge to fix
compatibly

DNSSEC goals and non-goals

+ Authenticity of positive replies

+ Authenticity of negative replies

+ Integrity

- Confidentiality

- Availability

First cut: signatures and certificates

Each resource record gets an RRSIG signature
E.g., A record for one name!address mapping
Observe: signature often larger than data

Signature validation keys in DNSKEY RRs

Recursive chain up to the root (or other “anchor”)

Add more indirection

DNS needs to scale to very large flat domains like
.com

Facilitated by having single DS RR in parent indicating
delegation

Chain to root now includes DSes as well

Negative answers

Also don’t want attackers to spoof non-existence
Gratuitous denial of service, force fallback, etc.

But don’t want to sign “x does not exist” for all x

Solution 1, NSEC: “there is no name between acacia

and baobab”



Preventing zone enumeration

Many domains would not like people enumerating all
their entries

DNS is public, but “not that public”

Unfortunately NSEC makes this trivial

Compromise: NSEC3 uses password-like salt and
repeated hash, allows opt-out

DANE: linking TLS to DNSSEC

“DNS-based Authentication of Named Entities”

DNS contains hash of TLS cert, don’t need CAs

How is DNSSEC’s tree of certs better than TLS’s?

Signing the root

Political problem: many already distrust US-centered
nature of DNS infrastructure

Practical problem: must be very secure with no
single point of failure
Finally accomplished in 2010

Solution involves ‘key ceremonies’, international
committees, smart cards, safe deposit boxes, etc.

Deployment

Standard deployment problem: all cost and no
benefit to being first mover

Servers working on it, mostly top-down

Clients: estimated around 30%

Will probably be common for a while: insecure
connection to secure resolver

What about privacy?

Users increasingly want privacy for their DNS
queries as well

Older DNSCurve and DNSCrypt protocols were not
standardized

More recent “DNS over TLS” and “DNS over HTTPS”
are RFCs

DNS over HTTPS in major browsers might have
serious centralization effects


