CSci 427\W
Development of Secure Software Systems
Day 22: Cryptography: public key primitives, failures

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Public key encryption and signatures

General description

) Public-key encryption (generalizes block cipher)
® Separate encryption key EK (public) and decryption key
DK (secret)
©) Signature scheme (generalizes MAC)
® Separate signing key SK (secret) and verification key VK
(public)

RSA setup

£) Choose n = pq, product of two large primes, as
modulus

£ n is public, but p and q are secret

£) Compute encryption and decryption exponents e
and d such that

M =M (mod n)

RSA encryption

©) Public key is (n,e)

o) Encryption of M is C = M¢ (mod n)

©) Private key is (n, d)

) Decryption of Cis C{ =M =M (mod n)

RSA signature

£) Signing key is (n, d)

©) Signature of M is S = MY (mod n)

£) Verification key is (n, e)

©) Check signature by S¢ =M% =M (mod n)

£) Note: symmetry is a nice feature of RSA, not shared
by other systems

RSA and factoring

£) We're not sure factoring is hard (likely not even
NP-complete), but it's been unsolved for a long time

o) If factoring is easy (e.q, in P), RSA is insecure
©) Converse might not be true: RSA might have other
problems

Homomorphism

£) Multiply RSA ciphertexts = multiply plaintexts

£) This homomorphism is useful for some interesting
applications

£) Even more powerful: fully homomorphic encryption

(eq, both + and x)
® First demonstrated in 2009; still challenging




Problems with vanilla RSA

£) Homomorphism leads to chosen-ciphertext attacks

o) If message and e are both small compared to n, can
compute M'/¢ over the integers

£) Many more complex attacks too

Hybrid encryption

£) Public-key operations are slow
£ In practice, use them just to set up symmetric

session keys

-+ Only pay RSA costs at setup time
— Breaks at either level are fatal

Padding, try #1

©) Need to expand message (e.g., AES key) size to
match modulus

£) PKCS#1 v. 1.5 scheme: prepend 00 O1 FF FF .. FF

©) Surprising discovery (Bleichenbacher'98): allows

adaptive chosen ciphertext attacks on SSL
® Variants recurred later (cf. "ROBOT” 2018)

Modern “padding”

£) Much more complicated encoding schemes using
hashing, random salts, Feistel-like structures, etc.

£) Common examples: OAEP for encryption, PSS for
signing

£) Progress driven largely by improvement in random
oracle proofs

Simpler padding alternative

£) "Key encapsulation mechanism” (KEM)

£) For common case of public-key crypto used for
symmetric-key setup
® Also applies to DH

£) Choose RSA message r at random mod n,
symmetric key is H(r)

— Hard to retrofit, RSA-KEM insecure if e and r reused
with different n

Post-quantum cryptography

©) One thing quantum computers would be good for is

breaking crypto
£) Square root speedup of general search
® Countermeasure: double symmetric security level
©) Factoring and discrete log become poly-time
® DH, RSA, DSA, elliptic curves totally broken
® Totally new primitives needed (lattices, etc.)

£) Not a problem yet, but getting ready

Box and locks revisited

£) Alice and Bob's box scheme fails if an intermediary
can set up two sets of boxes
® Middleperson (man-in-the-middle) attack
©) Real world analogue: challenges of protocol design
and public key distribution

Outline

Announcements intermission




Midterm 2 is Tuesday

) Similar in format to midterm 1
® Any paper materials OK, but no electronics

©) Covers OS security, web security, and crypto but
before public-key

£) Past exams and 3/4 solutions on public site

Anderson reading quiz

£) There will be a reading quiz on the Anderson
cryptography chapter
£) Won't be due until after next Thursday

©) But we'll post on Piazza when it's available
® Might use as part of your midterm studying

Outline

Cryptographic protocols

A couple more security goals

£) Non-repudiation: principal cannot later deny having
made a commitment
® le, consider proving fact to a third party
£) Forward secrecy: recovering later information does
not reveal past information

® Motivates using Diffie-Hellman to generate fresh keys for
each session

Abstract protocols

©) Outline of what information is communicated in
messages
® Omit most details of encoding, naming, sizes, choice of
ciphers, etc.

©) Describes honest operation
® But must be secure against adversarial participants

£) Seemingly simple, but many subtle problems

Protocol notation

A — B : Ng,{To, B, NgJk,
©) A — B: message sent from Alice intended for Bob
©) B (after :): Bob's name
o {- - -}x: encryption with key K

Example: simple authentication

A — B: A {A, Nk,
©) Eg, Alice is key fob, Bob is garage door
£) Alice proves she possesses the pre-shared key Ka
® Without revealing it directly
) Using encryption for authenticity and binding, not
secrecy

Nonce

A — B:A{A, Nk,
£) N is a nonce: a value chosen to make a message
unique
©) Best practice: pseudorandom

£ In constrained systems, might be a counter or
device-unigue serial number




Replay attacks

©) A nonce is needed to prevent a verbatim replay of a
previous message
£) Garage door difficulty: remembering previous nonces
® Particularly: lunchtime/roommate/valet scenario
©) Or, door chooses the nonce: challenge-response
authentication

Middleperson attacks

£) Older name: man-in-the-middle attack, MITM

£) Adversary impersonates Alice to Bob and
vice-versa, relays messages

£) Powerful position for both eavesdropping and
maodification

£) No easy fix if Alice and Bob aren't already related

Chess grandmaster problem

£) Variant or dual of middleperson

©) Adversary forwards messages to simulate
capabilities with his own identity

©) How to win at correspondence chess
£) Anderson’s MiG-in-the-middle

Anti-pattern: “oracle”

£) Any way a legitimate protocol service can give a
capability to an adversary

£) Can exist whenever a party decrypts, signs, etc.

£) "Padding oracle” was an instance of this at the
implementation level

Outline

More causes of crypto failure

Random numbers and entropy

£) Cryptographic RNGs use cipher-like techniques to
provide indistinguishability
£) But rely on truly random seeding to stop brute force
® Extreme case: no entropy — always same “randomness”
£) Modern best practice: seed pool with 256 bits of

entropy
® Suitable for security levels up to 22%°

Netscape RNG failure

£) Early versions of Netscape SSL (1994-1995) seeded
with:
® Time of day
® Process ID
® Parent process ID

©) Best case entropy only 64 bits
® (Not out of step with using 40-bit encryption)

£) But worse because many bits guessable

Debian/OpenSSL RNG failure (1)

£) OpenSSL has pretty good scheme using
/dev/urandom
£) Also mixed in some uninitialized variable values
® “Extra variation can't hurt”
£) From modern perspective, this was the original sin
® Remember undefined behavior discussion?

) But had no immediate ill effects




Debian/OpenSSL RNG failure (2)

©) Debian maintainer commented out some lines to fix
a Valgrind warning
® "Potential use of uninitialized value”

©) Accidentally disabled most entropy (all but 16 bits)

) Brief mailing list discussion didn't lead to
understanding

£) Broken library used for ~2 years before discovery

Detected RSA/DSA collisions

£) 2012: around 1% of the SSL keys on the public net
are breakable
® Some sites share complete keypairs
® RSA keys with one prime in common (detected by
large-scale GCD)
£) One likely culprit: insufficient entropy in key
generation
® Embedded devices, Linux /dev/urandom Vs.
/dev/random

£) DSA signature algorithm also very vulnerable

Side-channel attacks

©) Timing analysis:
® Number of 1 bits in modular exponentiation
® Unpadding, MAC checking, error handling
® Probe cache state of AES table entries

£) Power analysis
® Especially useful against smartcards
©) Fault injection

©) Data non-erasure
® Hard disks, “cold boot” on RAM

WEP “privacy”

£) First WiFi encryption standard: Wired Equivalent
Privacy (WEP)
£) F&S: designed by a committee that contained no
cryptographers
£) Problem 1. note “privacy”: what about integrity?
® Nope: stream cipher + CRC = easy bit flipping

WEP shared key

o) Single key known by all parties on network
©) Easy to compromise

©) Hard to change

£) Also often disabled by default

©) Example: a previous employer

WEP key size and IV size

£) Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key
® Both too small
£) 128-bit upgrade kept 24-bit IV

® Vague about how to choose IVs
® Least bad: sequential, collision takes hours
® Worse: random or everyone starts at zero

WEP RC4 related key attacks

©) Only true crypto weakness

£) RC4 “key schedule” vulnerable when:

® RC4 keys very similar (e.g., same key, similar IV)
® First stream bytes used

©) Not such a problem for other RC4 users like SSL
® Key from a hash, skip first output bytes

Newer problem with WPA (CCS'17)

£) Session key set up in a 4-message handshake

£) Key reinstallation attack: replay #3
® Causes most implementations to reset nonce and replay
counter
® In turn allowing many other attacks
® One especially bad case: reset key to O

£) Protocol state machine behavior poorly described in
spec
® Outside the scope of previous security proofs




Trustworthiness of primitives

) Classic worry: DES S-boxes
©) Obviously in trouble if cipher chosen by your

adversary

£ In a public spec, most worrying are unexplained

elements

©) Best practice: choose constants from well-known

math, like digits of 7t

Dual EC DRBG (1)

£) Pseudorandom generator in NIST standard, based on
elliptic curve

£) Looks like provable (slow enough!) but strangely no
proof

£) Specification includes long unexplained constants

) Academic researchers find:

® Some EC parts look good
® But outputs are statistically distinguishable

Dual EC DRBG (2)

©) Found 2007: special choice of constants allows

prediction attacks
® Big red flag for paranoid academics

©) Significant adoption in products sold to US govt.

FIPS-140 standards
® Semi-plausible rationale from RSA (EMC)

£) NSA scenario basically confirmed by Snowden leaks

® NIST and RSA immediately recommend withdrawal




