
CSci 4271W
Development of Secure Software Systems

Day 21: Cryptography part 3, MACs and public key
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

MACs

Building a secure channel

Announcements intermission

Public-key crypto basics

Public key encryption and signatures

MAC: basic idea

Message authentication code: similar to hash
function, but with a key

Adversary without key cannot forge MACs

Strong definition: adversary cannot forge anything,
even given chosen-message MACs on other
messages

CBC-MAC construction

Same process as CBC encryption, but:
Start with IV of 0
Return only the last ciphertext block

Both these conditions needed for security

For fixed-length messages (only), as secure as the
block cipher

HMAC construction

H(K kM): insecure due to length extension
Still not recommended: H(M k K), H(K kM k K)

HMAC: H(K� a k H(K� b kM))

Standard a = 0x5c
�, b = 0x36

�

Probably the most widely used MAC

Outline

MACs

Building a secure channel

Announcements intermission

Public-key crypto basics

Public key encryption and signatures

Session keys

Don’t use your long term password, etc., directly as
a key

Instead, session key used for just one channel

In modern practice, usually obtained with public-key
crypto

Separate keys for encryption and MACing

Order of operations

Encrypt and MAC (“in parallel”)
Safe only under extra assumptions on the MAC

Encrypt then MAC
Has cleanest formal safety proof

MAC then Encrypt
Preferred by FS&K for some practical reasons
Can also be secure



Authenticated encryption modes

Encrypting and MACing as separate steps is about
twice as expensive as just encrypting
“Authenticated encryption” modes do both at once

Newer (circa 2000) innovation, many variants

NIST-standardized and unpatented: Galois Counter
Mode (GCM)

Ordering and message numbers

Also don’t want attacker to be able to replay or
reorder messages

Simple approach: prefix each message with counter

Discard duplicate/out-of-order messages

Padding

Adjust message size to match multiple of block size

To be reversible, must sometimes make message
longer

E.g.: for 16-byte block, append either 1, or 2 2, or
3 3 3, up to 16 “16” bytes

Padding oracle attack

Have to be careful that decoding of padding does
not leak information

E.g., spend same amount of time MACing and
checking padding whether or not padding is right

Remote timing attack against CBC TLS published
2013

Don’t actually reinvent the wheel

This is all implemented carefully in OpenSSL, SSH,
etc.

Good to understand it, but rarely sensible to
reimplement it

You’ll probably miss at least one of decades’ worth
of attacks

Outline

MACs

Building a secure channel

Announcements intermission

Public-key crypto basics

Public key encryption and signatures

Midterm 2 is next Tuesday

Similar in format to midterm 1
Any paper materials OK, but no electronics

Covers OS security, web security, and crypto up
through this point in the lecture

Past exams (and later, solutions) on public site

Outline

MACs

Building a secure channel

Announcements intermission

Public-key crypto basics

Public key encryption and signatures



Pre-history of public-key crypto

First invented in secret at GCHQ

Proposed by Ralph Merkle for UC Berkeley grad.
security class project

First attempt only barely practical
Professor didn’t like it

Merkle then found more sympathetic Stanford
collaborators named Diffie and Hellman

Box and locks analogy

Alice wants to send Bob a gift in a locked box
They don’t share a key
Can’t send key separately, don’t trust UPS
Box locked by Alice can’t be opened by Bob, or
vice-versa

Box and locks analogy

Alice wants to send Bob a gift in a locked box
They don’t share a key
Can’t send key separately, don’t trust UPS
Box locked by Alice can’t be opened by Bob, or
vice-versa

Math perspective: physical locks commute

Protocol with clip art

Protocol with clip art Protocol with clip art

Protocol with clip art Public key primitives

Public-key encryption (generalizes block cipher)
Separate encryption key EK (public) and decryption key
DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and verification key VK
(public)



Modular arithmetic

Fix modulus n, keep only remainders mod n
mod 12: clock face; mod 232: unsigned int

+, -, and � work mostly the same

Division? Multiplicative inverse by extended GCD

Exponentiation: efficient by square and multiply

Generators and discrete log

Modulo a prime p, non-zero values and � have a
nice (“group”) structure

g is a generator if g0; g; g2; g3; : : : cover all
elements

Easy to compute x 7! gx

Inverse, discrete logarithm, hard for large p

Diffie-Hellman key exchange

Goal: anonymous key exchange

Public parameters p, g; Alice and Bob have resp.
secrets a, b

Alice!Bob: A = ga (mod p)

Bob!Alice: B = gb (mod p)

Alice computes Ba = gba = k

Bob computes Ab = gab = k

Relationship to a hard problem

We’re not sure discrete log is hard (likely not even
NP-complete), but it’s been unsolved for a long time

If discrete log is easy (e.g., in P), DH is insecure

Converse might not be true: DH might have other
problems

Categorizing assumptions

Math assumptions unavoidable, but can categorize

E.g., build more complex scheme, shows it’s “as
secure” as DH because it has the same underlying
assumption

Commonly “decisional” (DDH) and “computational”
(CDH) variants

Key size, elliptic curves

Need key sizes �10 times larger then security level
Attacks shown up to about 768 bits

Elliptic curves: objects from higher math with
analogous group structure

(Only tenuously connected to ellipses)

Elliptic curve algorithms have smaller keys, about 2�
security level

Outline

MACs

Building a secure channel

Announcements intermission

Public-key crypto basics

Public key encryption and signatures

General description

Public-key encryption (generalizes block cipher)
Separate encryption key EK (public) and decryption key
DK (secret)

Signature scheme (generalizes MAC)
Separate signing key SK (secret) and verification key VK
(public)



RSA setup

Choose n = pq, product of two large primes, as
modulus

n is public, but p and q are secret

Compute encryption and decryption exponents e
and d such that

Med =M (mod n)

RSA encryption

Public key is (n; e)

Encryption of M is C =Me (mod n)

Private key is (n; d)

Decryption of C is Cd =Med =M (mod n)

RSA signature

Signing key is (n; d)

Signature of M is S =Md (mod n)

Verification key is (n; e)

Check signature by Se =Mde =M (mod n)

Note: symmetry is a nice feature of RSA, not shared
by other systems

RSA and factoring

We’re not sure factoring is hard (likely not even
NP-complete), but it’s been unsolved for a long time

If factoring is easy (e.g., in P), RSA is insecure

Converse might not be true: RSA might have other
problems

Homomorphism

Multiply RSA ciphertexts ) multiply plaintexts

This homomorphism is useful for some interesting
applications
Even more powerful: fully homomorphic encryption
(e.g., both + and �)

First demonstrated in 2009; still challenging

Problems with vanilla RSA

Homomorphism leads to chosen-ciphertext attacks

If message and e are both small compared to n, can
compute M1=e over the integers

Many more complex attacks too

Hybrid encryption

Public-key operations are slow

In practice, use them just to set up symmetric
session keys

+ Only pay RSA costs at setup time

- Breaks at either level are fatal

Padding, try #1

Need to expand message (e.g., AES key) size to
match modulus

PKCS#1 v. 1.5 scheme: prepend 00 01 FF FF .. FF

Surprising discovery (Bleichenbacher’98): allows
adaptive chosen ciphertext attacks on SSL

Variants recurred later (c.f. “ROBOT” 2018)



Modern “padding”

Much more complicated encoding schemes using
hashing, random salts, Feistel-like structures, etc.

Common examples: OAEP for encryption, PSS for
signing

Progress driven largely by improvement in random
oracle proofs

Simpler padding alternative

“Key encapsulation mechanism” (KEM)

For common case of public-key crypto used for
symmetric-key setup

Also applies to DH

Choose RSA message r at random mod n,
symmetric key is H(r)

- Hard to retrofit, RSA-KEM insecure if e and r reused
with different n

Post-quantum cryptography

One thing quantum computers would be good for is
breaking crypto
Square root speedup of general search

Countermeasure: double symmetric security level

Factoring and discrete log become poly-time
DH, RSA, DSA, elliptic curves totally broken
Totally new primitives needed (lattices, etc.)

Not a problem yet, but getting ready

Box and locks revisited

Alice and Bob’s box scheme fails if an intermediary
can set up two sets of boxes

Middleperson (man-in-the-middle) attack

Real world analogue: challenges of protocol design
and public key distribution


