CSci 427\W
Development of Secure Software Systems
Day 18: Web Security 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Cross-site scripting, contd

No string-free solution

) For server-side XSS, no way to avoid string
concatenation

£) Web page will be sent as text in the end

£) XSS especially hard kind of injection

Don't deny-list

£) Browser capabilities continue to evolve

£) Attempts to list all bad constructs inevitably
incomplete

©) Even worse for XSS than other injection attacks

Filter failure: one-pass delete

©) Simple idea: remove all occurrences of <script>
©) What happens to <scr<script>ipt>?

Filter failure: UTF-7

©) You may have heard of UTF-8
® Encode Unicode as 8-bit bytes

£) UTF-7 is similar but uses only ASCII

£) Encoding can be specified in @ <meta> tag, or some
browsers will guess

) +ADw-script+AD4-

Filter failure: event handlers

<IMG onmouseover="alert(’xss’)">
©) Put this on something the user will be tempted to
click on
©) There are more than 100 handlers like this
recognized by various browsers

Use good libraries

£) Coding your own defenses will never work
©) Take advantage of known good implementations

£) Best case: already built into your framework
® Disappointingly rare




Content Security Policy

©) Added HTTP header, W3C recommendation

) Lets site opt-in to stricter treatment of embedded
content, such as:
® No inline JS, only loaded from separate URLs
® Disable JS eval et al.

©) Has an interesting violation-reporting mode

Outline

More cross-site risks

HTTP header injection

©) Untrusted data included in response headers

©) Can include CRLF and new headers, or premature
end to headers

©) AKA “response splitting”

Content sniffing

£) Browsers determine file type from headers,
extension, and content-based guessing
® Latter two for ~ 1% server errors
£) Many sites host “untrusted” images and media

£) Inconsistencies in guessing lead to a kind of XSS
® Eg, "chimera” PNG-HTML document

Cross-site request forgery

) Certain web form on bank . com used to wire money

©) Link or script on evil.com loads it with certain
parameters
® Linking is exception to same-origin

o If 'm logged in, money sent automatically

CSRF prevention

) Give site's forms random-nonce tokens

® E.g, in POST hidden fields
® Not in a cookie, that's the whole point

©) Reject requests without proper token
® Or, ask user to re-authenticate

) XSS can be used to steal CSRF tokens

Open redirects

) Common for one page to redirect clients to another

©) Target should be validated
® With authentication check if appropriate
©) Open redirect target supplied in parameter with no
checks
® Doesn't directly hurt the hosting site
® But reputation risk, say if used in phishing
® We teach users to trust by site

Outline

Announcements intermission




Web security reading

©) The OWASP Top Ten is a web page enumerating the
most important web security threats, with advice
about what to do about them

©) Reading quiz will be due a week from today,
Thursday the 28th

Outline

Confidentiality and privacy

Site perspective

) Protect confidentiality of authenticators
® Passwords, session cookies, CSRF tokens

©) Duty to protect some customer info
® Personally identifying info (“identity theft”)
® Credit-card info (Payment Card Industry Data Security
Standards)
® Health care (HIPAA), education (FERPA)
® Whatever customers reasonably expect

You need to use SSL/TLS

) We have come around to view that more sites need
to support HTTPS
® Special thanks to WiFi, NSA
£ If you take credit cards (of course)

£ If you ask users to log in

® Must be protecting something, right?
® Also important for users of Tor, proxies, etc.

Server-side encryption

£) Also consider encrypting data “at rest”
©) (Or, avoid storing it at all)
©) Provides defense in depth
® Reduce damage after another attack
©) May be hard to truly separate keys

® OWASP example: public key for website — backend
credit card info

Adjusting client behavior

€) HTTPS and password fields are basic hints

£) Consider disabling autocomplete
® Usability tradeoff, save users from themselves
® Finally standardized in HTMLS

£) Consider disabling caching

® Performance tradeoff
® Better not to have this on user’s disk
® Or proxy? You need SSL/TLS

User vs. site perspective

£) User privacy goals can be opposed to site goals
©) Such as in tracking for advertisements

©) Browser makers can find themselves in the middle
® Of course, differ in institutional pressures

Third party content / web bugs

£) Much tracking involves sites other than the one in

the URL bar
® For fun, check where your cookies are coming from

) Various levels of cooperation
£) Web bugs are typically 1x1 images used only for
tracking

Fllike <0




Cookies arms race

) Privacy-sensitive users like to block and/or delete
cookies
) Sites have various reasons to retain identification

©) Various workarounds:

® Similar features in Flash and HTML5

® Various channels related to the cache

® Evercookie: store in n places, regenerate if subset are
deleted

Browser fingerprinting

£) Combine various server or JS-visible attributes
passively
® User agent string (10 bits)
® Window/screen size (4.83 bits)
® Available fonts (13.9 bits)
® Plugin verions (154 bits)

(Data from panopticlick.eff.org, far from exhaustive)

History stealing

) History of what sites you've visited is not supposed

to be JS-visible
£) But, many side-channel attacks have been possible
® Query link color
® CSS style with external image for visited links
® Slow-rendering timing channel
® Harvesting bitmaps
m User perception (e.g. fake CAPTCHA)

Browser and extension choices

£) More aggressive privacy behavior lives in extensions
® Disabling most JavaScript (NoScript)
® HTTPS Everywhere (centralized list)
® Tor Browser Bundle

) Default behavior is much more controversial

® Concern not to kill advertising support as an economic
model

Outline

Even more web risks

Misconfiguration problems

) Default accounts
©) Unneeded features

£) Framework behaviors
® Don't automatically create variables from query fields

Openness tradeoffs

) Error reporting

® Few benign users want to see a stack backtrace
©) Directory listings

® Hallmark of the old days
£) Readable source code of scripts

® Doesn't have your DB password in it, does it?

Using vulnerable components

£) Large web apps can use a lot of third-party code

£) Convenient for attackers too
® OWASP: two popular vulnerable components downloaded
22m times

£) Hiding doesn't work if it's popular
©) Stay up to date on security announcements




Clickjacking

) Fool users about what they're clicking on
® Circumvent security confirmations
® Fabricate ad interest
©) Example techniques:
® Frame embedding
® Transparency
® Spoof cursor
® Temporal “bait and switch”

Crawling and scraping

©) A lot of web content is free-of-charge, but

proprietary
® Yours in a certain context, if you view ads, etc.

£) Sites don't want it downloaded automatically (web
crawling)

©) Or parsed and user for another purpose (screen
scraping)

©) High-rate or honest access detectable

Outline

Crypto basics

-ography, -ology, -analysis

£) Cryptography (narrow sense). designing encryption
£) Cryptanalysis: breaking encryption

£) Cryptology: both of the above

£) Code (narrow sense). word-for-concept substitution
) Cipher: the “"codes” we actually care about

Caesar cipher

©) Advance three letters in alphabet:
A—-D,B—E,...

©) Decrypt by going back three letters
©) Internet-era variant: rot-13
) Easy to break if you know the principle

Keys and Kerckhoffs's principle

£) The only secret part of the cipher is a key

©) Security does not depend on anything else being
secret

£) Modern (esp. civilian, academic) crypto embraces
openness quite strongly

Symmetric vs. public key

©) Symmetric key (today's lecture): one key used by all
participants
©) Public key: one key kept secret, another published

® Techniques invented in 1970s
® Makes key distribution easier
® Depends on fancier math

Goal: secure channel

£) Leaks no content information
® Not protected: size, timing
) Messages delivered intact and in order
® Or not at all
©) Even if an adversary can read, insert, and delete
traffic




One-time pad

©) Secret key is truly random data as long as message

©) Encrypt by XOR (more generally addition mod
alphabet size)

©) Provides perfect, “information-theoretic” secrecy
£) No way to get around key size requirement

Computational security

£) More realistic: assume adversary has a limit on
computing power
£) Secure if breaking encryption is computationally
infeasible
® Eg, exponential-time brute-force search

£) Ties cryptography to complexity theory

Key sizes and security levels

o) Difficulty measured in powers of two, ignore small
constant factors

©) Power of attack measured by number of steps, aim
for better than brute force

) 232 definitely too easy, probably 2¢ too
©) Modern symmetric key size: at least 2'28

Crypto primitives

£) Base complicated systems on a minimal number of
simple operations

£) Designed to be fast, secure in wide variety of uses
£) Study those primitives very intensely

Attacks on encryption

©) Known ciphertext
® Weakest attack

©) Known plaintext (and corresponding ciphertext)
©) Chosen plaintext

©) Chosen ciphertext (and plaintext)
® Strongest version: adaptive

Certificational attacks

£) Good primitive claims no attack more effective than
brute force
£) Any break is news, even if it's not yet practical
® Canary in the coal mine

£ Eg, 21261 attack against AES-128
£) Also watched: attacks against simplified variants

Fundamental ignorance

£) We don't really know that any computational
cryptosystem is secure

) Security proof would be tantamount to proving
P #NP

©) Crypto is fundamentally more uncertain than other
parts of security

Relative proofs

£) Prove security under an unproved assumption

©) In symmetric crypto, prove a construction is secure
if the primitive is
® Often the proof looks like: if the construction is insecure,
so is the primitive
£) Can also prove immunity against a particular kind of
attack




Random oracle paradigm

£) Assume ideal model of primitives: functions selected
uniformly from a large space
® Anderson: elves in boxes
£) Not theoretically sound; assumption cannot be
satisfied

£) But seems to be safe in practice

Pseudorandomness and distinguishers

£) Claim: primitive cannot be distinguished from a truly
random counterpart
® In polynomial time with non-negligible probability
£) We can build a distinguisher algorithm to exploit any
weakness
) Slightly too strong for most practical primitives, but a
good goal

Open standards

£) How can we get good primitives?

£) Open-world best practice: run competition, invite
experts to propose then attack

©) Run by neutral experts, eg. US NIST

©) Recent good examples: AES, SHA-3

A certain three-letter agency

£) National Security Agency (NSA): has primary
responsibility for “signals intelligence”
£) Dual-mission tension:

® Break the encryption of everyone in the world
® Help US encryption not be broken by foreign powers




