
CSci 4271W
Development of Secure Software Systems

Day 18: Web Security 2
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

Crypto basics

No string-free solution

For server-side XSS, no way to avoid string
concatenation

Web page will be sent as text in the end

XSS especially hard kind of injection

Don’t deny-list

Browser capabilities continue to evolve

Attempts to list all bad constructs inevitably
incomplete

Even worse for XSS than other injection attacks

Filter failure: one-pass delete

Simple idea: remove all occurrences of <script>

What happens to <scr<script>ipt>?

Filter failure: UTF-7

You may have heard of UTF-8
Encode Unicode as 8-bit bytes

UTF-7 is similar but uses only ASCII

Encoding can be specified in a <meta> tag, or some
browsers will guess

+ADw-script+AD4-

Filter failure: event handlers

<IMG onmouseover="alert('xss')">

Put this on something the user will be tempted to
click on

There are more than 100 handlers like this
recognized by various browsers

Use good libraries

Coding your own defenses will never work

Take advantage of known good implementations

Best case: already built into your framework
Disappointingly rare



Content Security Policy

Added HTTP header, W3C recommendation

Lets site opt-in to stricter treatment of embedded
content, such as:

No inline JS, only loaded from separate URLs
Disable JS eval et al.

Has an interesting violation-reporting mode

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

Crypto basics

HTTP header injection

Untrusted data included in response headers

Can include CRLF and new headers, or premature
end to headers

AKA “response splitting”

Content sniffing

Browsers determine file type from headers,
extension, and content-based guessing

Latter two for � 1% server errors

Many sites host “untrusted” images and media

Inconsistencies in guessing lead to a kind of XSS
E.g., “chimera” PNG-HTML document

Cross-site request forgery

Certain web form on bank.com used to wire money

Link or script on evil.com loads it with certain
parameters

Linking is exception to same-origin

If I’m logged in, money sent automatically

CSRF prevention

Give site’s forms random-nonce tokens
E.g., in POST hidden fields
Not in a cookie, that’s the whole point

Reject requests without proper token
Or, ask user to re-authenticate

XSS can be used to steal CSRF tokens

Open redirects

Common for one page to redirect clients to another

Target should be validated
With authentication check if appropriate

Open redirect: target supplied in parameter with no
checks

Doesn’t directly hurt the hosting site
But reputation risk, say if used in phishing
We teach users to trust by site

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

Crypto basics



Web security reading

The OWASP Top Ten is a web page enumerating the
most important web security threats, with advice
about what to do about them

Reading quiz will be due a week from today,
Thursday the 28th

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

Crypto basics

Site perspective

Protect confidentiality of authenticators
Passwords, session cookies, CSRF tokens

Duty to protect some customer info
Personally identifying info (“identity theft”)
Credit-card info (Payment Card Industry Data Security
Standards)
Health care (HIPAA), education (FERPA)
Whatever customers reasonably expect

You need to use SSL/TLS

We have come around to view that more sites need
to support HTTPS

Special thanks to WiFi, NSA

If you take credit cards (of course)

If you ask users to log in
Must be protecting something, right?
Also important for users of Tor, proxies, etc.

Server-side encryption

Also consider encrypting data “at rest”

(Or, avoid storing it at all)

Provides defense in depth
Reduce damage after another attack

May be hard to truly separate keys
OWASP example: public key for website ! backend
credit card info

Adjusting client behavior

HTTPS and password fields are basic hints

Consider disabling autocomplete
Usability tradeoff, save users from themselves
Finally standardized in HTML5

Consider disabling caching
Performance tradeoff
Better not to have this on user’s disk
Or proxy? You need SSL/TLS

User vs. site perspective

User privacy goals can be opposed to site goals

Such as in tracking for advertisements

Browser makers can find themselves in the middle
Of course, differ in institutional pressures

Third party content / web bugs

Much tracking involves sites other than the one in
the URL bar

For fun, check where your cookies are coming from

Various levels of cooperation

Web bugs are typically 1x1 images used only for
tracking



Cookies arms race

Privacy-sensitive users like to block and/or delete
cookies

Sites have various reasons to retain identification

Various workarounds:
Similar features in Flash and HTML5
Various channels related to the cache
Evercookie: store in n places, regenerate if subset are
deleted

Browser fingerprinting

Combine various server or JS-visible attributes
passively

User agent string (10 bits)
Window/screen size (4.83 bits)
Available fonts (13.9 bits)
Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from exhaustive)

History stealing

History of what sites you’ve visited is not supposed
to be JS-visible
But, many side-channel attacks have been possible

Query link color
CSS style with external image for visited links
Slow-rendering timing channel
Harvesting bitmaps
User perception (e.g. fake CAPTCHA)

Browser and extension choices

More aggressive privacy behavior lives in extensions
Disabling most JavaScript (NoScript)
HTTPS Everywhere (centralized list)
Tor Browser Bundle

Default behavior is much more controversial
Concern not to kill advertising support as an economic
model

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

Crypto basics

Misconfiguration problems

Default accounts

Unneeded features

Framework behaviors
Don’t automatically create variables from query fields

Openness tradeoffs

Error reporting
Few benign users want to see a stack backtrace

Directory listings
Hallmark of the old days

Readable source code of scripts
Doesn’t have your DB password in it, does it?

Using vulnerable components

Large web apps can use a lot of third-party code

Convenient for attackers too
OWASP: two popular vulnerable components downloaded
22m times

Hiding doesn’t work if it’s popular

Stay up to date on security announcements



Clickjacking

Fool users about what they’re clicking on
Circumvent security confirmations
Fabricate ad interest

Example techniques:
Frame embedding
Transparency
Spoof cursor
Temporal “bait and switch”

Crawling and scraping

A lot of web content is free-of-charge, but
proprietary

Yours in a certain context, if you view ads, etc.

Sites don’t want it downloaded automatically (web
crawling)

Or parsed and user for another purpose (screen
scraping)

High-rate or honest access detectable

Outline

Cross-site scripting, cont’d

More cross-site risks

Announcements intermission

Confidentiality and privacy

Even more web risks

Crypto basics

-ography, -ology, -analysis

Cryptography (narrow sense): designing encryption

Cryptanalysis: breaking encryption

Cryptology: both of the above

Code (narrow sense): word-for-concept substitution

Cipher: the “codes” we actually care about

Caesar cipher

Advance three letters in alphabet:
A! D;B! E; : : :

Decrypt by going back three letters

Internet-era variant: rot-13

Easy to break if you know the principle

Keys and Kerckhoffs’s principle

The only secret part of the cipher is a key

Security does not depend on anything else being
secret

Modern (esp. civilian, academic) crypto embraces
openness quite strongly

Symmetric vs. public key

Symmetric key (today’s lecture): one key used by all
participants
Public key: one key kept secret, another published

Techniques invented in 1970s
Makes key distribution easier
Depends on fancier math

Goal: secure channel

Leaks no content information
Not protected: size, timing

Messages delivered intact and in order
Or not at all

Even if an adversary can read, insert, and delete
traffic



One-time pad

Secret key is truly random data as long as message

Encrypt by XOR (more generally addition mod
alphabet size)

Provides perfect, “information-theoretic” secrecy

No way to get around key size requirement

Computational security

More realistic: assume adversary has a limit on
computing power
Secure if breaking encryption is computationally
infeasible

E.g., exponential-time brute-force search

Ties cryptography to complexity theory

Key sizes and security levels

Difficulty measured in powers of two, ignore small
constant factors

Power of attack measured by number of steps, aim
for better than brute force

232 definitely too easy, probably 264 too

Modern symmetric key size: at least 2128

Crypto primitives

Base complicated systems on a minimal number of
simple operations

Designed to be fast, secure in wide variety of uses

Study those primitives very intensely

Attacks on encryption

Known ciphertext
Weakest attack

Known plaintext (and corresponding ciphertext)

Chosen plaintext

Chosen ciphertext (and plaintext)
Strongest version: adaptive

Certificational attacks

Good primitive claims no attack more effective than
brute force
Any break is news, even if it’s not yet practical

Canary in the coal mine

E.g., 2126:1 attack against AES-128

Also watched: attacks against simplified variants

Fundamental ignorance

We don’t really know that any computational
cryptosystem is secure

Security proof would be tantamount to proving
P 6= NP

Crypto is fundamentally more uncertain than other
parts of security

Relative proofs

Prove security under an unproved assumption

In symmetric crypto, prove a construction is secure
if the primitive is

Often the proof looks like: if the construction is insecure,
so is the primitive

Can also prove immunity against a particular kind of
attack



Random oracle paradigm

Assume ideal model of primitives: functions selected
uniformly from a large space

Anderson: elves in boxes

Not theoretically sound; assumption cannot be
satisfied

But seems to be safe in practice

Pseudorandomness and distinguishers

Claim: primitive cannot be distinguished from a truly
random counterpart

In polynomial time with non-negligible probability

We can build a distinguisher algorithm to exploit any
weakness

Slightly too strong for most practical primitives, but a
good goal

Open standards

How can we get good primitives?

Open-world best practice: run competition, invite
experts to propose then attack

Run by neutral experts, e.g. US NIST

Recent good examples: AES, SHA-3

A certain three-letter agency

National Security Agency (NSA): has primary
responsibility for “signals intelligence”
Dual-mission tension:

Break the encryption of everyone in the world
Help US encryption not be broken by foreign powers


