CSci 427\W
Development of Secure Software Systems
Day 8: ROP and Fuzzing

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Return-oriented programming (ROP)

Pop culture analogy: ransom note trope

come | [at midnight]. [bring |

Basic new idea

£) Treat the stack like a new instruction set
£) "Opcodes” are pointers to existing code
£) Generalizes return-to-libc with more programmability

£) Academic introduction and source of name: Hovav
Shacham, ACM CCS 2007

ret2pop (Nergal, Miiller)

©) Take advantage of shellcode pointer already present
on stack
©) Rewrite intervening stack to treat the shellcode
pointer like a return address
® A long sequence of chained returns, one pop

ret2pop (Nergal, Miiller)

9 —— shellcode

Gadgets

©) Basic code unit in ROP

©) Any existing instruction sequence that ends in a
return

©) Found by (possibly automated) search

Another partial example

— syscall; ret

L

—=mov %rcx, %rax; ret
(syscall 59 = execve)
—>pop %rcx; ret

o
8

aaaaa

|

Overlapping x86 instructions

push %$esi

[mov $0x56, sdh|[sbb $0x£f, salllinc seax|or %al, %dh]
[movzbl Oxlc(%esi),%edx|[incl 0x8(%eax) | ...
0f b6 56 le £f 40 08 c6

£) Variable length instructions can start at any byte
©) Usually only one intended stream

Where gadgets come from

£) Possibilities:
® Entirely intended instructions
® Entirely unaligned bytes
® Fall through from unaligned to intended

£) Standard x86 return is only one byte, Oxc3

Building instructions

©) String together gadgets into manageable units of
functionality
©) Examples:

® Loads and stores
® Arithmetic
® Unconditional jumps

©) Must work around limitations of available gadgets

Hardest case: conditional branch

£ Existing jCC instructions not useful
£) But carry flag CF is

£) Three steps:

1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

£) Can also use other indirect jumps, overlapping not
required
©) Automation in gadget finding and compilers

0 In practice: minimal ROP code to allow transfer to
other shellcode

Outline

Announcements intermission

Note to early readers

©) This is the section of the slides most likely to change
in the final version

0 If class has already happened, make sure you have
the latest slides for announcements

Outline

Testing and fuzzing

Testing and security

) “Testing shows the presence, not the absence of
bugs” - Dijkstra
£) Easy versions of some bugs can be found by
targeted tests:
® Buffer overflows: long strings

® Integer overflows: large numbers
® Format string vulnerabilities: %x

Random or fuzz testing

£) Random testing can also sometimes reveal bugs
©) Original ‘fuzz’ (Miller): program </dev/urandom
£) Even this was surprisingly effective

Mutational fuzzing

©) Instead of totally random inputs, make small random
changes to normal inputs

£) Changes are called mutations

£) Benign starting inputs are called seeds

£) Good seeds help in exercising interesting/deep
behavior

Grammar-based fuzzing

£) Observation: it helps to know what correct inputs
look like

£) Grammar specifies legal patterns, run backwards
with random choices to generate

£) Generated inputs can again be basis for mutation

£) Most commonly used for standard input formats
® Network protocols, JavaScript, etc.

What if you don't have a grammar?

©) Input format may be unknown, or buggy and limited
£) Writing @ grammar may be too much manual work

£) Can the structure of interesting inputs be figured out
automatically?

Coverage-driven fuzzing

£ Instrument code to record what code is executed

©) An input is interesting if it executes code that was
not executed before

©) Only interesting inputs are used as basis for future
mutation

AFL

©) Best known open-source tool, pioneered
coverage-driven fuzzing

©) American Fuzzy Lop, a breed of rabbits

) Stores coverage information in a compact hash table

) Compiler-based or binary-level instrumentation

£) Has a number of other optimizations

Outline

ROP shellcoding exercise

Setup

©) Key motivation for ROP is to disable W & X

£) Can be done with a single syscall, similar to execve
shellcode

©) Your exercise: put together such shellcode from a
limited gadget set

£) Puzzle/planning aspect: order to avoid overwriting

