CSci 8314, S’23 m Class Projects m Version: February 12, 2023 ‘

You may work on the projects by yourself or with a group of 2 (need more? need
justification & permission). More is expected from a two-student paper: it is a good idea
to team up with someone else if the project you have in mind requires a big effort (e.g.
substantial coding involved). In this situation, please clarify who did what in a seperate
section [call it e.g. “Tasks”|

You will be asked to present a plan in a couple of weeks — so it is time to start thinking
about projects. A separate discussion on presentations will start taking place some time
in mid to late March.

This is a preliminary version!

1 Project themes.

You essentially have three options.

1. You can do a project on a topic related to sparse matrix computations in your own
research. [for example : test / development of a solver for fluid flow problems, or
sparse matrix methods for information retrieval]

2. Write a theoretical paper or a survey paper related to sparse matrix computation
[for example a survey ‘on the use of sparse matrix techniques in genomics’].

3. You can select among a few topics suggested in the next section. These are just a
few examples.

2 A few suggestions

The following is a list of possible projects. This list is by no means exhaustive. The
orderering is not significant. The list may be updated a couple of times during the
semester. Also note that the references are given here just to get you started.

’Project#l ‘ Sparse matrix computations on GPUs — either an overview of what people

have done or an implementation /comparison of your own of some techniques [in the latter
case you will need to have access to a GPU - e.g. at MSI] — see, e.g., [26].

’Project#2 ‘ Label propagation and applications [39, 41, 22]. This is an important and
very interesting topic in semi-supervised learning. More references to be added.

’Project#?) ‘ Graph Neural Networks. This is an area that is generating quite a bit of
papers currently. It is about how to adapt Convolutional Networks in Deep Learning to
data that consist of graphs. Here are some papers: [14, 24, 21, 20, 4, 42, 25, 7, 40, 43, 44|

’Project#4 ‘ Hypergraphs and their use [47, 46, 9, 15, 31, 13, §]

’Pro ject#5 ‘ Explore the use of sparse matrices in signal processing, e.g., the problem of

Dictionary learning, see for example [30].



’Project#6 ‘ Comparison of reordering techniques for direct solvers. Nested Dissection
ordering, Minimal Degree algorithm, etc. You can obtain the 'meshpart’ matlab toolbox
from

http:/ /www.cerfacs.fr/algor/Softs/ MESHPART/

Then test various ordering strategies available (see the parameter 'method’ in ndpart).
Compare with any other reorderings you can get from matlab (those available from matlab
are are colamd and symrem). If you prefer you can do this project in C or Fortran and
download a few reordering techniques available.

’ Project#7 ‘ Generate linear systems from IFISS CDF code and integrate different solvers
into ifiss. Ifiss is a matlab code for finite element discretization and solution of various
fluid dynamics problems. The code can be downloaded from here:

http://www.maths.manchester.ac.uk/ djs/ifiss/

’Pro ject#8 ‘ Graph coarsening is an important ingredient in multilevel iterative methods
such as Algebraic MultiGrid (AMG), see, e.g.,[3], It has also appeared in work related
to machine learning [1, 12, 11, 16, 17, 19, 27, 29]. A project along these lines would
explore specific techniques with implementations, or present a good survey of coarsening
for data-related applications — by being as broad as possible in the applications covered.

’Project#Q ‘ There are very interesting applications of sparse matrix techniques in com-

puter graphics and image processing. One such application (or a class of applications
actually) is Poisson Image Editing. This consists of modifying images in a seamless way.
Modifications may include importing a piece from another image (‘cloning’), illumunation
changes, background color modifications, seamless tiling, etc.. This leads to solving sparse
linear systems, specifically after discretizing a Poisson equation. The main reference is
[35], see also [10].

’Project#lO ‘ Present an overview of methods used in image segmentation. A few good
starting points: [45, 34].

’Pro ject#11 ‘ Sparse tensors and applications. Tensors have become very important due

to their use in image/video processing. More recently, Sparse tensors have appeared as an
important tool in text processing for example. Here are a couple of references: [38, 2, 37].

’Project#12 ‘ Explore sparsity in Deep Neural networks.. It is known that the types of
nonlinear functions used in neural networks tend to introduce sparsity. It is not clear
how/whether this has been effectively exploited by practitioners so far. This could be
am exciting study on a subject of great current interest. A few recent references are
[28, 32, 33, 18].

’Project#13 ‘ An important area of research centers around “matrix completion”, i.e.,
the problem of finding missing entries in a given matrix. The best illustration of this is




in recommender system: you are given a matrix of ratings of (e.g.) movies by individuals
and you would like to guess some of those entries which are not filled up for the purpose or
recommending movies (or books to by as is done in Amazon).. There are many references
here - a good starting point for recommender systems is [36]. To study the problem in-
depth see for example [23, 5, 6]. An idea that is key in this topic is the judicious use of
norms to control sparsity and rank.
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