CSci 427\W
Development of Secure Software Systems
Day 20: Cryptography: public key

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Building a secure channel

Session keys

©) Don't use your long term password, etc., directly as
a key

©) Instead, session key used for just one channel

©) In modern practice, usually obtained with public-key
crypto

) Separate keys for encryption and MACing

Order of operations

£ Encrypt and MAC (“in parallel”)

® Safe only under extra assumptions on the MAC
£) Encrypt then MAC

® Has cleanest formal safety proof
£) MAC then Encrypt

® Preferred by FS&K for some practical reasons
® Can also be secure

Authenticated encryption modes

©) Encrypting and MACing as separate steps is about
twice as expensive as just encrypting
©) “Authenticated encryption” modes do both at once
® Newer (circa 2000) innovation, many variants
©) NIST-standardized and unpatented: Galois Counter
Mode (GCM)

Ordering and message numbers

£) Also don't want attacker to be able to replay or
reorder messages

©) Simple approach: prefix each message with counter

£) Discard duplicate/out-of-order messages

Padding

©) Adjust message size to match multiple of block size
©) To be reversible, must sometimes make message
longer
©) Eq. for 16-byte block, append either 1, or 2 2, or
3 33, up to 16 "16” bytes

Padding oracle attack

£) Have to be careful that decoding of padding does
not leak information

£ Eg., spend same amount of time MACing and
checking padding whether or not padding is right

©) Remote timing attack against CBC TLS published
2013




Don't actually reinvent the wheel

©) This is all implemented carefully in OpenSSL, SSH,
etc.

£) Good to understand it, but rarely sensible to
reimplement it

©) You'll probably miss at least one of decades’ worth
of attacks

Outline

Announcements intermission

Prof. McCamant extra office hour

©) Supplement for project-related demand
©) Tomorrow, Friday 2-3pm
©) Usual location: 4-225E Keller Hall

Outline

Public-key crypto basics

Pre-history of public-key crypto

) First invented in secret at GCHQ
©) Proposed by Ralph Merkle for UC Berkeley grad.
security class project
® First attempt only barely practical
® Professor didn't like it
©) Merkle then found more sympathetic Stanford
collaborators named Diffie and Hellman

Box and locks analogy

£) Alice wants to send Bob a gift in a locked box
® They don't share a key
® Can't send key separately, don't trust UPS

® Box locked by Alice can't be opened by Bob, or
vice-versa

Box and locks analogy

©) Alice wants to send Bob a qift in a locked box
® They don't share a key
® Can't send key separately, don't trust UPS
® Box locked by Alice can't be opened by Bob, or
vice-versa

£) Math perspective: physical locks commute

Protocol with clip art
Alice Bob

Alice Bob




Protocol with clip art
Alice Bob

Alice Bob

Protocol with clip art

Alice Bob

Alice Bob

Protocol with clip art

Alice Bob
L9
A
'l!m
—0
B
Alice Bob

Public key primitives

£) Public-key encryption (generalizes block cipher)
® Separate encryption key EK (public) and decryption key
DK (secret)
£) Signature scheme (generalizes MAC)
® Separate signing key SK (secret) and verification key VK
(public)

Modular arithmetic

©) Fix modulus n, keep only remainders mod n
® mod 12: clock face; mod 232 unsigned int

) +, —, and x work mostly the same
©) Division? Multiplicative inverse by extended GCD
©) Exponentiation: efficient by square and multiply

Generators and discrete log

£) Modulo a prime p, non-zero values and x have a
nice (“group”) structure

© g is a generator if ¢°, g, g%, g°, ... cover all
elements

©) Easy to compute x — g*
©) Inverse, discrete logarithm, hard for large p

Diffie-Hellman key exchange

£) Goal: anonymous key exchange

©) Public parameters p, g; Alice and Bob have resp.

secrets a, b
©) Alice—Bob: A =g® (mod p)
©) Bob—Alice: B = g° (mod p)
o Alice computes B® = g®® =k
) Bob computes A® = g® =k

Relationship to a hard problem

£) We're not sure discrete log is hard (likely not even
NP-complete), but it's been unsolved for a long time

o) If discrete log is easy (eg, in P), DH is insecure
£) Converse might not be true: DH might have other
problems




Categorizing assumptions

£) Math assumptions unavoidable, but can categorize

©) E.g, build more complex scheme, shows it's “as
secure” as DH because it has the same underlying
assumption

£) Commonly “decisional” (DDH) and “computational”
(CDH) variants

Key size, elliptic curves

£) Need key sizes ~10 times larger then security level
® Attacks shown up to about 768 bits
£ Elliptic curves: objects from higher math with
analogous group structure
® (Only tenuously connected to ellipses)
) Elliptic curve algorithms have smaller keys, about 2x
security level

Outline

Good technical writing (pt. 1)

Writing in CS versus other writing

£) Key goal is accurately conveying precise technical
information

£) More important: careful use of terminology,
structured organization

©) Less important: writer's personality, persuasion,
appeals to emotion

Still important: concise expression

©) Don't use long words or complicated expressions
when simpler ones would convey the same meaning.
Negative examples:
® necessitate
® utilize
® due to the fact that

) Beneficial for both clarity and style

Know your audience: terminology

£) When technical terminology makes your point clearly,
use it

£) Provide definitions if a concept might be new to
many readers

® Be careful to provide the right information in the definition
® Define at the first instead of a later use

£) But, avoid introducing too many new terms
® Keep the same term when referring to the same concept

Precise explanations

©) Don't say "we” do something when it's the computer
that does it
® And avoid passive constructions

©) Don't anthropomorphize (computers don't “know")

) Use singular by default so plural provides a
distinction:

- The students take tests
+ Each student takes a test
+ Each student takes two tests

Provide structure

£) Use plenty of sections and sub-sections

o) It's OK to have some redundancy in previewing
structure
£ Limit each paragraph to one concept, and not too
long
® Start with a clear topic sentence

£) Split long, complex sentences into separate ones




Know your audience: Project 0.5

©) For projects in this course, assume your audience is
another student who already understands general
course concepts
® Up to the current point in the course
® le, don't need to define “buffer overflow” from scratch
£) But you need to explain specifics of a vulnerable
program
® Make clear what part of the program you're referring to
® Explain all the specific details of a vulnerability

Inclusive language

£) Avoid words and grammar that implies relevant
people are male

£) My opinion: avoid using he/him pronouns for
unknown people

£) Some possible alternatives

® “he/she”

® Alternating genders

® Rewrite to plural and use “they” (may be less clear)
® Singular “they” (least traditional, but spreading)

Outline

Public key encryption and signatures

General description

£) Public-key encryption (generalizes block cipher)

® Separate encryption key EK (public) and decryption key
DK (secret)

£) Signature scheme (generalizes MAC)

® Separate signing key SK (secret) and verification key VK
(public)

RSA setup

©) Choose n = pq, product of two large primes, as
modulus

© n is public, but p and q are secret

£) Compute encryption and decryption exponents e
and d such that

M¢ =M (mod n)

RSA encryption

©) Public key is (n, e)

©) Encryption of M is C = M¢ (mod n)

©) Private key is (n, d)

) Decryption of Cis C{ =M =M (mod n)

RSA signature

©) Signing key is (n, d)

© Signature of M is S =M% (mod n)

©) Verification key is (n, e)

o Check signature by S¢ = M =M (mod n)

©) Note: symmetry is a nice feature of RSA, not shared
by other systems

RSA and factoring

£) We're not sure factoring is hard (likely not even
NP-complete), but it's been unsolved for a long time

o) If factoring is easy (e.g, in P), RSA is insecure

£) Converse might not be true: RSA might have other
problems




Homomorphism

©) Multiply RSA ciphertexts = multiply plaintexts
£) This homomorphism is useful for some interesting

applications
©) Even more powerful: fully homomaorphic encryption

(eq, both + and x)
m First demonstrated in 2009; still challenging

Problems with vanilla RSA

£) Homomorphism leads to chosen-ciphertext attacks

£ If message and e are both small compared to n, can
compute M'/¢ over the integers

£) Many more complex attacks too

Hybrid encryption

) Public-key operations are slow

©) In practice, use them just to set up symmetric
session keys

+ Only pay RSA costs at setup time

— Breaks at either level are fatal

Padding, try #1

©) Need to expand message (e.g., AES key) size to
match modulus

£) PKCS#1 v. 15 scheme: prepend 00 O1 FF FF .. FF

£) Surprising discovery (Bleichenbacher'98): allows

adaptive chosen ciphertext attacks on SSL
® Variants recurred later (cf. "ROBOT" 2018)

Modern “padding”

£) Much more complicated encoding schemes using
hashing, random salts, Feistel-like structures, etc.

©) Common examples: OAEP for encryption, PSS for
signing

£) Progress driven largely by improvement in random
oracle proofs

Simpler padding alternative

£) "Key encapsulation mechanism” (KEM)

£) For common case of public-key crypto used for

symmetric-key setup
® Also applies to DH

£) Choose RSA message r at random mod n,
symmetric key is H(r)

— Hard to retrofit, RSA-KEM insecure if e and r reused
with different n

Post-quantum cryptography

£) One thing quantum computers would be good for is
breaking crypto
©) Square root speedup of general search
® Countermeasure: double symmetric security level
) Factoring and discrete log become poly-time
® DH, RSA, DSA, elliptic curves totally broken
® Totally new primitives needed (lattices, etc.)

©) Not a problem yet, but getting ready

Box and locks revisited

£) Alice and Bob's box scheme fails if an intermediary

can set up two sets of boxes
® Middleperson (man-in-the-middle) attack

©) Real world analogue: challenges of protocol design
and public key distribution




