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Building a secure channel

Session keys

©) Don't use your long term password, etc., directly as
a key

©) Instead, session key used for just one channel

©) In modern practice, usually obtained with public-key
crypto

) Separate keys for encryption and MACing

Order of operations

£ Encrypt and MAC (“in parallel”)

® Safe only under extra assumptions on the MAC
£) Encrypt then MAC

® Has cleanest formal safety proof
£) MAC then Encrypt

® Preferred by FS&K for some practical reasons
® Can also be secure

Authenticated encryption modes

©) Encrypting and MACing as separate steps is about
twice as expensive as just encrypting
©) “Authenticated encryption” modes do both at once
® Newer (circa 2000) innovation, many variants
©) NIST-standardized and unpatented: Galois Counter
Mode (GCM)

Ordering and message numbers

£) Also don't want attacker to be able to replay or
reorder messages

©) Simple approach: prefix each message with counter

£) Discard duplicate/out-of-order messages

Padding

©) Adjust message size to match multiple of block size
©) To be reversible, must sometimes make message
longer
©) Eq. for 16-byte block, append either 1, or 2 2, or
3 33, up to 16 "16” bytes

Padding oracle attack

£) Have to be careful that decoding of padding does
not leak information

£ Eg., spend same amount of time MACing and
checking padding whether or not padding is right

©) Remote timing attack against CBC TLS published
2013




Don't actually reinvent the wheel

©) This is all implemented carefully in OpenSSL, SSH,
etc.

£) Good to understand it, but rarely sensible to
reimplement it

©) You'll probably miss at least one of decades’ worth
of attacks
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Announcements intermission

Prof. McCamant extra office hour

©) Supplement for project-related demand
©) Tomorrow, Friday 2-3pm
©) Usual location: 4-225E Keller Hall
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Public-key crypto basics

Pre-history of public-key crypto

) First invented in secret at GCHQ
©) Proposed by Ralph Merkle for UC Berkeley grad.
security class project
® First attempt only barely practical
® Professor didn't like it
©) Merkle then found more sympathetic Stanford
collaborators named Diffie and Hellman

Box and locks analogy

£) Alice wants to send Bob a gift in a locked box
® They don't share a key
® Can't send key separately, don't trust UPS

® Box locked by Alice can't be opened by Bob, or
vice-versa

Box and locks analogy

©) Alice wants to send Bob a qift in a locked box
® They don't share a key
® Can't send key separately, don't trust UPS
® Box locked by Alice can't be opened by Bob, or
vice-versa

£) Math perspective: physical locks commute
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Public key primitives

£) Public-key encryption (generalizes block cipher)
® Separate encryption key EK (public) and decryption key
DK (secret)
£) Signature scheme (generalizes MAC)
® Separate signing key SK (secret) and verification key VK
(public)

Modular arithmetic

©) Fix modulus n, keep only remainders mod n
® mod 12: clock face; mod 232 unsigned int

) +, —, and x work mostly the same
©) Division? Multiplicative inverse by extended GCD
©) Exponentiation: efficient by square and multiply

Generators and discrete log

£) Modulo a prime p, non-zero values and x have a
nice (“group”) structure

© g is a generator if ¢°, g, g%, g°, ... cover all
elements

©) Easy to compute x — g*
©) Inverse, discrete logarithm, hard for large p

Diffie-Hellman key exchange

£) Goal: anonymous key exchange

©) Public parameters p, g; Alice and Bob have resp.

secrets a, b
©) Alice—Bob: A =g® (mod p)
©) Bob—Alice: B = g° (mod p)
o Alice computes B® = g®® =k
) Bob computes A® = g® =k

Relationship to a hard problem

£) We're not sure discrete log is hard (likely not even
NP-complete), but it's been unsolved for a long time

o) If discrete log is easy (eg, in P), DH is insecure
£) Converse might not be true: DH might have other
problems




Categorizing assumptions

£) Math assumptions unavoidable, but can categorize

©) E.g, build more complex scheme, shows it's “as
secure” as DH because it has the same underlying
assumption

£) Commonly “decisional” (DDH) and “computational”
(CDH) variants

Key size, elliptic curves

£) Need key sizes ~10 times larger then security level
® Attacks shown up to about 768 bits
£ Elliptic curves: objects from higher math with
analogous group structure
® (Only tenuously connected to ellipses)
) Elliptic curve algorithms have smaller keys, about 2x
security level
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Good technical writing (pt. 1)

Writing in CS versus other writing

£) Key goal is accurately conveying precise technical
information

£) More important: careful use of terminology,
structured organization

©) Less important: writer's personality, persuasion,
appeals to emotion

Still important: concise expression

©) Don't use long words or complicated expressions
when simpler ones would convey the same meaning.
Negative examples:
® necessitate
® utilize
® due to the fact that

) Beneficial for both clarity and style

Know your audience: terminology

£) When technical terminology makes your point clearly,
use it

£) Provide definitions if a concept might be new to
many readers

® Be careful to provide the right information in the definition
® Define at the first instead of a later use

£) But, avoid introducing too many new terms
® Keep the same term when referring to the same concept

Precise explanations

©) Don't say "we” do something when it's the computer
that does it
® And avoid passive constructions

©) Don't anthropomorphize (computers don't “know")

) Use singular by default so plural provides a
distinction:

- The students take tests
+ Each student takes a test
+ Each student takes two tests

Provide structure

£) Use plenty of sections and sub-sections

o) It's OK to have some redundancy in previewing
structure
£ Limit each paragraph to one concept, and not too
long
® Start with a clear topic sentence

£) Split long, complex sentences into separate ones




Know your audience: Project 0.5

©) For projects in this course, assume your audience is
another student who already understands general
course concepts
® Up to the current point in the course
® le, don't need to define “buffer overflow” from scratch
£) But you need to explain specifics of a vulnerable
program
® Make clear what part of the program you're referring to
® Explain all the specific details of a vulnerability

Inclusive language

£) Avoid words and grammar that implies relevant
people are male

£) My opinion: avoid using he/him pronouns for
unknown people

£) Some possible alternatives

® “he/she”

® Alternating genders

® Rewrite to plural and use “they” (may be less clear)
® Singular “they” (least traditional, but spreading)
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Public key encryption and signatures

General description

£) Public-key encryption (generalizes block cipher)

® Separate encryption key EK (public) and decryption key
DK (secret)

£) Signature scheme (generalizes MAC)

® Separate signing key SK (secret) and verification key VK
(public)

RSA setup

©) Choose n = pq, product of two large primes, as
modulus

© n is public, but p and q are secret

£) Compute encryption and decryption exponents e
and d such that

M¢ =M (mod n)

RSA encryption

©) Public key is (n, e)

©) Encryption of M is C = M¢ (mod n)

©) Private key is (n, d)

) Decryption of Cis C{ =M =M (mod n)

RSA signature

©) Signing key is (n, d)

© Signature of M is S =M% (mod n)

©) Verification key is (n, e)

o Check signature by S¢ = M =M (mod n)

©) Note: symmetry is a nice feature of RSA, not shared
by other systems

RSA and factoring

£) We're not sure factoring is hard (likely not even
NP-complete), but it's been unsolved for a long time

o) If factoring is easy (e.g, in P), RSA is insecure

£) Converse might not be true: RSA might have other
problems




Homomorphism

©) Multiply RSA ciphertexts = multiply plaintexts
£) This homomorphism is useful for some interesting

applications
©) Even more powerful: fully homomaorphic encryption

(eq, both + and x)
m First demonstrated in 2009; still challenging

Problems with vanilla RSA

£) Homomorphism leads to chosen-ciphertext attacks

£ If message and e are both small compared to n, can
compute M'/¢ over the integers

£) Many more complex attacks too

Hybrid encryption

) Public-key operations are slow

©) In practice, use them just to set up symmetric
session keys

+ Only pay RSA costs at setup time

— Breaks at either level are fatal

Padding, try #1

©) Need to expand message (e.g., AES key) size to
match modulus

£) PKCS#1 v. 15 scheme: prepend 00 O1 FF FF .. FF

£) Surprising discovery (Bleichenbacher'98): allows

adaptive chosen ciphertext attacks on SSL
® Variants recurred later (cf. "ROBOT" 2018)

Modern “padding”

£) Much more complicated encoding schemes using
hashing, random salts, Feistel-like structures, etc.

©) Common examples: OAEP for encryption, PSS for
signing

£) Progress driven largely by improvement in random
oracle proofs

Simpler padding alternative

£) "Key encapsulation mechanism” (KEM)

£) For common case of public-key crypto used for

symmetric-key setup
® Also applies to DH

£) Choose RSA message r at random mod n,
symmetric key is H(r)

— Hard to retrofit, RSA-KEM insecure if e and r reused
with different n

Post-quantum cryptography

£) One thing quantum computers would be good for is
breaking crypto
©) Square root speedup of general search
® Countermeasure: double symmetric security level
) Factoring and discrete log become poly-time
® DH, RSA, DSA, elliptic curves totally broken
® Totally new primitives needed (lattices, etc.)

©) Not a problem yet, but getting ready

Box and locks revisited

£) Alice and Bob's box scheme fails if an intermediary

can set up two sets of boxes
® Middleperson (man-in-the-middle) attack

©) Real world analogue: challenges of protocol design
and public key distribution




