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Block ciphers and modes of operation, contd

Substitution/permutation network

©) Parallel structure combining reversible elements:
©) Substitution: invertible lookup table (*S-box")
©) Permutation: shuffle bits

Feistel cipher

©) Split block in half, operate in turn:
(Lit1, Riz1) = (R, Ly ® F(Ry, Ky))
£) Key advantage: F need not be invertible
® Also saves space in hardware
£) Luby-Rackoff: if F is pseudo-random, 4 or more
rounds gives a strong PRP

DES

©) Data Encryption Standard: AES predecessor
1977-2005

£) 64-bit block, 56-bit key

©) Implementable in 70s hardware, not terribly fast in
software

) Triple DES variant still used in places

Some DES history

©) Developed primarily at IBM, based on an earlier
cipher named “Lucifer”
£) Final spec helped and “helped” by the NSA

® Argued for smaller key size
® S-boxes tweaked to avoid a then-secret attack

£) Eventually victim to brute-force attack

DES brute force history

1977 est. $20m cost custom hardware
1993 est. $Im cost custom hardware
1997 distributed software break

1998 $250k built ASIC hardware

2006 $10k FPGAs

2012 as-a-service against MS-CHAPv2

Double encryption?

£) Combine two different block ciphers?
® Belt and suspenders
£) Anderson: don't do it
£) FS&K: could do it, not a recommendation
£) Maurer and Massey (JCrypt'93): might only be as
strong as first cipher




Modes of operation

£) How to build a cipher for arbitrary-length data from a
block cipher
©) Many approaches considered
® For some reason, most have three-letter acronyms
©) More recently: properties susceptible to relative
proof

ECB

) Electronic CodeBook

) Split into blocks, apply cipher to each one individually
) Leaks equalities between plaintext blocks

) Almost never suitable for general use

Do not use ECB

CBC

) Cipher Block Chaining

0Ci=E(Pi®Cia)

) Long-time most popular approach, starting to decline

£) Plaintext changes propagate forever, ciphertext
changes only one block

CBC: getting an IV

£) C, is called the initialization vector (IV)
® Must be known for decryption
©) IV should be random-looking
® To prevent first-block equalities from leaking (lesser
version of ECB problem)
£) Common approaches

® Generate at random
® Encrypt a nonce

Stream modes: OFB, CTR

) Output FeedBack: produce keystream by repeatedly
encrypting the IV
® Danger: collisions lead to repeated keystream
) Counter: produce from encryptions of an
incrementing value

® Recently becoming more popular: allows parallelization
and random access
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Announcements intermission

Various announcements

£) Active Project 0.5 discussion now on Piazza
® Including a common question about goto and code
injection
) Reading quiz on OWASP is ready, due next Tuesday
4/4
£) Next reading will be a chapter from Anderson about
cryptography
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Hash functions and MACs

Ideal model

£ Ideal crypto hash function: pseudorandom function
® Arbitrary input, fixed-size output
©) Simplest kind of elf in box, theoretically very
convenient
£) But large gap with real systems: common practice is
to target particular properties

Kinds of attacks

£) Pre-image, “inversion”: given y, find x such that
H(x) =y

£) Second preimage, targeted collision: given x, H(x),
find x" # x such that H(x') = H(x)

©) (Free) collision: find x;, x, such that H(x;) = H(x;)

Birthday paradox and attack

£) There are almost certainly two people in this class
with the same birthday

o n people have () = ©(n?) pairs
©) So only about \/n expected for collision
£) "Birthday attack” finds collisions in any function

Security levels

) For function with k-bit output:

£) Preimage and second preimage should have
complexity 2¥

) Collision has complexity 2/2

©) Conservative: use hash function twice as big as

block cipher key
® Though if you're paranoid, cipher blocks can repeat too

Non-cryptographic hash functions

£) The ones you probably use for hash tables

) CRCs, checksums

£) Output too small, but also not resistant to attack
£ Eqg, CRC is linear and algebraically nice

Short hash function history

©) On the way out: MD5 (128 bit)
® Flaws known, collision-finding now routine

©) SHA(-0y: first from NIST/NSA, quickly withdrawn
® Likely flaw discovered 3 years later

£) SHA-1: fixed SHA-O, 160-bit output.

© 2% collision attack described in 2013
® First public collision found (using 6.5 kCPU yr) in 2017

Length extension problem

£) MD5, SHA!, etc.,, computed left to right over blocks

£) Can sometimes compute H(a || b) in terms of
H(a)
® || means bit string concatenation
£) Makes many PRF-style constructions insecure




SHA-2 and SHA-3

£) SHA-2: evolutionary, larger, improvement of SHA-1
® Exists as SHA-{224, 256, 384,512}
® But still has length-extension problem
£) SHA-3: chosen recently in open competition like AES

® Formerly known as Keccak, official standard Aug. 2015
® New design, fixes length extension
® Adoption has been gradual

MAC: basic idea

£) Message authentication code: similar to hash
function, but with a key

©) Adversary without key cannot forge MACs

£) Strong definition: adversary cannot forge anything,
even given chosen-message MACs on other
messages

CBC-MAC construction

£) Same process as CBC encryption, but:

® Start with IV of O
® Return only the last ciphertext block

) Both these conditions needed for security

©) For fixed-length messages (only), as secure as the
block cipher

HMAC construction

£ H(K || M): insecure due to length extension
® Still not recommended: H(M || K), H(K | M || K)

OHMAC. HK @ a || HK® b || M))
©) Standard a = 0x5c*, b = 0x36*
£) Probably the most widely used MAC
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Building a secure channel

Session keys

£) Don't use your long term password, etc., directly as
a key

©) Instead, session key used for just one channel

£) In modern practice, usually obtained with public-key
crypto

£) Separate keys for encryption and MACing

Order of operations

©) Encrypt and MAC ("in parallel”)

® Safe only under extra assumptions on the MAC
©) Encrypt then MAC

® Has cleanest formal safety proof
©) MAC then Encrypt

® Preferred by FS&K for some practical reasons
® Can also be secure

Authenticated encryption modes

©) Encrypting and MACing as separate steps is about
twice as expensive as just encrypting
£ “Authenticated encryption” modes do both at once
® Newer (circa 2000) innovation, many variants
£) NIST-standardized and unpatented: Galois Counter
Mode (GCM)




Ordering and message numbers

©) Also don't want attacker to be able to replay or
reorder messages

©) Simple approach: prefix each message with counter
©) Discard duplicate/out-of-order messages

Padding

£) Adjust message size to match multiple of block size

£) To be reversible, must sometimes make message
longer

£ Eq. for 16-byte block, append either 1, or 2 2, or
33 3, up to 16 "16" bytes

Padding oracle attack

©) Have to be careful that decoding of padding does
not leak information

©) Eg, spend same amount of time MACing and
checking padding whether or not padding is right

©) Remote timing attack against CBC TLS published
2013

Don't actually reinvent the wheel

£) This is all implemented carefully in OpenSSL, SSH,
etc.

£) Good to understand it, but rarely sensible to
reimplement it

£ You'll probably miss at least one of decades’ worth
of attacks
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Public-key crypto basics

Pre-history of public-key crypto

£ First invented in secret at GCHQ
©) Proposed by Ralph Merkle for UC Berkeley grad.
security class project
® First attempt only barely practical
® Professor didn't like it
£) Merkle then found more sympathetic Stanford
collaborators named Diffie and Hellman

Box and locks analogy

©) Alice wants to send Bob a qift in a locked box
® They don't share a key
® Can't send key separately, don't trust UPS

® Box locked by Alice can't be opened by Bob, or
vice-versa

Box and locks analogy

) Alice wants to send Bob a gift in a locked box
® They don't share a key

® Can't send key separately, don't trust UPS

® Box locked by Alice can't be opened by Bob, or
vice-versa

£) Math perspective: physical locks commute
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Public key primitives

©) Public-key encryption (generalizes block cipher)
® Separate encryption key EK (public) and decryption key
DK (secret)
©) Signature scheme (generalizes MAC)
® Separate signing key SK (secret) and verification key VK
(public)

Modular arithmetic

£) Fix modulus n, keep only remainders mod n
® mod 12: clock face; mod 23% unsigned int

£ +, —, and x work mostly the same
) Division? Multiplicative inverse by extended GCD
£) Exponentiation: efficient by square and multiply

Generators and discrete log

©) Modulo a prime p, non-zero values and x have a
nice ("group”) structure

o g is a generator if ¢°, g, g%, g%, ... cover all
elements

©) Easy to compute x — g*
©) Inverse, discrete logarithm, hard for large p

Diffie-Hellman key exchange

£) Goal: anonymous key exchange

€) Public parameters p, g; Alice and Bob have resp.
secrets a, b

©) Alice—Bob: A =g* (mod p)

£ Bob—Alice: B =g° (mod p)

) Alice computes B¢ = g®¢ =k

£ Bob computes A = g®® =k




Relationship to a hard problem

©) We're not sure discrete log is hard (likely not even
NP-complete), but it's been unsolved for a long time

o) If discrete log is easy (e.g, in P), DH is insecure

£) Converse might not be true: DH might have other
problems

Categorizing assumptions

£) Math assumptions unavoidable, but can categorize

£) E.g., build more complex scheme, shows it's “as
secure” as DH because it has the same underlying
assumption

£) Commonly “decisional” (DDH) and “computational”
(CDH) variants

Key size, elliptic curves

©) Need key sizes ~10 times larger then security level
® Attacks shown up to about 768 bits
) Elliptic curves: objects from higher math with
analogous group structure
® (Only tenuously connected to ellipses)
) Elliptic curve algorithms have smaller keys, about 2 x
security level




