CSci 427\W
Development of Secure Software Systems
Day 19: Cryptography part 3, block ciphers and integrity

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Block ciphers and modes of operation, contd

Substitution/permutation network

©) Parallel structure combining reversible elements:
©) Substitution: invertible lookup table (*S-box")
©) Permutation: shuffle bits

Feistel cipher

©) Split block in half, operate in turn:
(Lit1, Riz1) = (R, Ly ® F(Ry, Ky))
£) Key advantage: F need not be invertible
® Also saves space in hardware
£) Luby-Rackoff: if F is pseudo-random, 4 or more
rounds gives a strong PRP

DES

©) Data Encryption Standard: AES predecessor
1977-2005

£) 64-bit block, 56-bit key

©) Implementable in 70s hardware, not terribly fast in
software

) Triple DES variant still used in places

Some DES history

©) Developed primarily at IBM, based on an earlier
cipher named “Lucifer”
£) Final spec helped and “helped” by the NSA

® Argued for smaller key size
® S-boxes tweaked to avoid a then-secret attack

£) Eventually victim to brute-force attack

DES brute force history

1977 est. $20m cost custom hardware
1993 est. $Im cost custom hardware
1997 distributed software break

1998 $250k built ASIC hardware

2006 $10k FPGAs

2012 as-a-service against MS-CHAPv2

Double encryption?

£) Combine two different block ciphers?
® Belt and suspenders
£) Anderson: don't do it
£) FS&K: could do it, not a recommendation
£) Maurer and Massey (JCrypt'93): might only be as
strong as first cipher

Modes of operation

£) How to build a cipher for arbitrary-length data from a
block cipher
©) Many approaches considered
® For some reason, most have three-letter acronyms
©) More recently: properties susceptible to relative
proof

ECB

) Electronic CodeBook

) Split into blocks, apply cipher to each one individually
) Leaks equalities between plaintext blocks

) Almost never suitable for general use

Do not use ECB

CBC

) Cipher Block Chaining

0Ci=E(Pi®Cia)

) Long-time most popular approach, starting to decline

£) Plaintext changes propagate forever, ciphertext
changes only one block

CBC: getting an IV

£) C, is called the initialization vector (IV)
® Must be known for decryption
©) IV should be random-looking
® To prevent first-block equalities from leaking (lesser
version of ECB problem)
£) Common approaches

® Generate at random
® Encrypt a nonce

Stream modes: OFB, CTR

) Output FeedBack: produce keystream by repeatedly
encrypting the IV
® Danger: collisions lead to repeated keystream
) Counter: produce from encryptions of an
incrementing value

® Recently becoming more popular: allows parallelization
and random access

Outline

Announcements intermission

Various announcements

£) Active Project 0.5 discussion now on Piazza
® Including a common question about goto and code
injection
) Reading quiz on OWASP is ready, due next Tuesday
4/4
£) Next reading will be a chapter from Anderson about
cryptography

Outline

Hash functions and MACs

Ideal model

£ Ideal crypto hash function: pseudorandom function
® Arbitrary input, fixed-size output
©) Simplest kind of elf in box, theoretically very
convenient
£) But large gap with real systems: common practice is
to target particular properties

Kinds of attacks

£) Pre-image, “inversion”: given y, find x such that
H(x) =y

£) Second preimage, targeted collision: given x, H(x),
find x" # x such that H(x') = H(x)

©) (Free) collision: find x;, x, such that H(x;) = H(x;)

Birthday paradox and attack

£) There are almost certainly two people in this class
with the same birthday

o n people have () = ©(n?) pairs
©) So only about \/n expected for collision
£) "Birthday attack” finds collisions in any function

Security levels

) For function with k-bit output:

£) Preimage and second preimage should have
complexity 2¥

) Collision has complexity 2/2

©) Conservative: use hash function twice as big as

block cipher key
® Though if you're paranoid, cipher blocks can repeat too

Non-cryptographic hash functions

£) The ones you probably use for hash tables

) CRCs, checksums

£) Output too small, but also not resistant to attack
£ Eqg, CRC is linear and algebraically nice

Short hash function history

©) On the way out: MD5 (128 bit)
® Flaws known, collision-finding now routine

©) SHA(-0y: first from NIST/NSA, quickly withdrawn
® Likely flaw discovered 3 years later

£) SHA-1: fixed SHA-O, 160-bit output.

© 2% collision attack described in 2013
® First public collision found (using 6.5 kCPU yr) in 2017

Length extension problem

£) MD5, SHA!, etc.,, computed left to right over blocks

£) Can sometimes compute H(a || b) in terms of
H(a)
® || means bit string concatenation
£) Makes many PRF-style constructions insecure

SHA-2 and SHA-3

£) SHA-2: evolutionary, larger, improvement of SHA-1
® Exists as SHA-{224, 256, 384,512}
® But still has length-extension problem
£) SHA-3: chosen recently in open competition like AES

® Formerly known as Keccak, official standard Aug. 2015
® New design, fixes length extension
® Adoption has been gradual

MAC: basic idea

£) Message authentication code: similar to hash
function, but with a key

©) Adversary without key cannot forge MACs

£) Strong definition: adversary cannot forge anything,
even given chosen-message MACs on other
messages

CBC-MAC construction

£) Same process as CBC encryption, but:

® Start with IV of O
® Return only the last ciphertext block

) Both these conditions needed for security

©) For fixed-length messages (only), as secure as the
block cipher

HMAC construction

£ H(K || M): insecure due to length extension
® Still not recommended: H(M || K), H(K | M || K)

OHMAC. HK @ a || HK® b || M))
©) Standard a = 0x5c*, b = 0x36*
£) Probably the most widely used MAC

Outline

Building a secure channel

Session keys

£) Don't use your long term password, etc., directly as
a key

©) Instead, session key used for just one channel

£) In modern practice, usually obtained with public-key
crypto

£) Separate keys for encryption and MACing

Order of operations

©) Encrypt and MAC ("in parallel”)

® Safe only under extra assumptions on the MAC
©) Encrypt then MAC

® Has cleanest formal safety proof
©) MAC then Encrypt

® Preferred by FS&K for some practical reasons
® Can also be secure

Authenticated encryption modes

©) Encrypting and MACing as separate steps is about
twice as expensive as just encrypting
£ “Authenticated encryption” modes do both at once
® Newer (circa 2000) innovation, many variants
£) NIST-standardized and unpatented: Galois Counter
Mode (GCM)

Ordering and message numbers

©) Also don't want attacker to be able to replay or
reorder messages

©) Simple approach: prefix each message with counter
©) Discard duplicate/out-of-order messages

Padding

£) Adjust message size to match multiple of block size

£) To be reversible, must sometimes make message
longer

£ Eq. for 16-byte block, append either 1, or 2 2, or
33 3, up to 16 "16" bytes

Padding oracle attack

©) Have to be careful that decoding of padding does
not leak information

©) Eg, spend same amount of time MACing and
checking padding whether or not padding is right

©) Remote timing attack against CBC TLS published
2013

Don't actually reinvent the wheel

£) This is all implemented carefully in OpenSSL, SSH,
etc.

£) Good to understand it, but rarely sensible to
reimplement it

£ You'll probably miss at least one of decades’ worth
of attacks

Outline

Public-key crypto basics

Pre-history of public-key crypto

£ First invented in secret at GCHQ
©) Proposed by Ralph Merkle for UC Berkeley grad.
security class project
® First attempt only barely practical
® Professor didn't like it
£) Merkle then found more sympathetic Stanford
collaborators named Diffie and Hellman

Box and locks analogy

©) Alice wants to send Bob a qift in a locked box
® They don't share a key
® Can't send key separately, don't trust UPS

® Box locked by Alice can't be opened by Bob, or
vice-versa

Box and locks analogy

) Alice wants to send Bob a gift in a locked box
® They don't share a key

® Can't send key separately, don't trust UPS

® Box locked by Alice can't be opened by Bob, or
vice-versa

£) Math perspective: physical locks commute

Protocol with clip art

Alice Bob

Alice Bob

Protocol with clip art

Alice Bob
Alice Bob

Protocol with clip art
Alice Bob

Alice Bob

Protocol with cIip art

Alice

«’Tﬂ/
\‘B\“

Alice

Public key primitives

©) Public-key encryption (generalizes block cipher)
® Separate encryption key EK (public) and decryption key
DK (secret)
©) Signature scheme (generalizes MAC)
® Separate signing key SK (secret) and verification key VK
(public)

Modular arithmetic

£) Fix modulus n, keep only remainders mod n
® mod 12: clock face; mod 23% unsigned int

£ +, —, and x work mostly the same
) Division? Multiplicative inverse by extended GCD
£) Exponentiation: efficient by square and multiply

Generators and discrete log

©) Modulo a prime p, non-zero values and x have a
nice ("group”) structure

o g is a generator if ¢°, g, g%, g%, ... cover all
elements

©) Easy to compute x — g*
©) Inverse, discrete logarithm, hard for large p

Diffie-Hellman key exchange

£) Goal: anonymous key exchange

€) Public parameters p, g; Alice and Bob have resp.
secrets a, b

©) Alice—Bob: A =g* (mod p)

£ Bob—Alice: B =g° (mod p)

) Alice computes B¢ = g®¢ =k

£ Bob computes A = g®® =k

Relationship to a hard problem

©) We're not sure discrete log is hard (likely not even
NP-complete), but it's been unsolved for a long time

o) If discrete log is easy (e.g, in P), DH is insecure

£) Converse might not be true: DH might have other
problems

Categorizing assumptions

£) Math assumptions unavoidable, but can categorize

£) E.g., build more complex scheme, shows it's “as
secure” as DH because it has the same underlying
assumption

£) Commonly “decisional” (DDH) and “computational”
(CDH) variants

Key size, elliptic curves

©) Need key sizes ~10 times larger then security level
® Attacks shown up to about 768 bits
) Elliptic curves: objects from higher math with
analogous group structure
® (Only tenuously connected to ellipses)
) Elliptic curve algorithms have smaller keys, about 2 x
security level

