CSci 427\W
Development of Secure Software Systems
Day 3: More Memory Safety

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Stack buffer overflow, recap

Source-level view

void func(char *attacker_controlled) {
char buffer[50];
strcpy(buffer, attacker_controlled);

Stack frame overflow

L 12a(%rbp)
16(%rbp)

-
[997%55) 8 (ssrbp)

PP | srpp

-8(%rbp)

1on9 | 16 (srbp)

o
“top" of ar(20]
sta

srsp 101 |-36(%rbp)

Outline

Reversing the stack

A possible solution

£) Part of what makes this classic attack easy is that
the array grows in the direction toward the function’s
return address

©) If we made the stack grow towards higher addresses
instead, this wouldn't work in the same way

£) Classic puzzler: why isn't this a solution to the
problem?

A concrete example

void func(char *attacker_controlled) {
char buffer[50];
strcpy (buffer, attacker_controlled);
}

What might happen in this example, for instance?

Outline

Reversing the stack, discussion




Stack direction orientation

©) Higher addresses are “deeper” in the stack, and
represent older stack frames (callers) and data
(pushed first)

©) Lower addresses are closer to the “top” of the
stack, representing more-recently pushed frames
(callees) and data

Stack frame normal overflow

argv,
etc.

EECTT 1]

caller
main()

callee
func()

Reversed overflow

argv, E
etc. E \—1
return
2l laddress

main()

func()

71

local
char(8]

strepy() [=] -

:7:\ SEERE

Outline

Other safety problems

Non-contiguous overflow

©) An overflow doesn't have to write to the buffer in
sequence

) For instance, the code might compute a single index,
and store to it

Heap buffer overflow

£) Overwriting a malloced buffer isn't close to a return
address
£) But other targets are available:

® Metadata used to manage the heap, contents of other
objects

Use after free

) A common bug is to free an object via one pointer
and keep using it via another

©) Leads to unsafe behavior after the memory is
reused for another object

Integer overflow

£ Integer types have limited size, and will wrap around
if @ computation is too large
£) Not unsafe itself, but often triggers later bugs
® Eg, not allocating enough space




Function pointers, etc.

) Other data used for control flow could be targeted
for overwriting by an attacker

£ Common C case: function pointers
©) More obscure C case: setjmp/longjmp buffers

Virtual dispatch

£) When C+ objects have virtual methods, which
implementation is called depends on the runtime
type

£) Under the hood, this is implemented with a table of
function pointers called a vtable

£) An appealing target in attacking C+ code

Non-control data overwrite

©) An attacker can also trigger undesired-to-you
behavior by modifying other data

) For instance, flags that control other security checks

Format string injection

€) The first argument of printf is a little language
controlling output formatting

£) Best practice is for the format string to be a
constant

£) An attacker who controls a format string can trigger
other mischief

Outline

Integer overflow example

Integer overflow to buffer overflow

£) One common pattern: overflow causes an allocation
to be too small

©) In machine integers, multiplication doesn't always
make a value larger

Overflow example

struct obj { short ident, x, y, z; long b; double c;};
struct obj *read_objs(int num_objs) {

unsigned int size = num_objs*(unsigned)sizeof(obj);

struct obj *objs = malloc(size);

struct obj *p = objs;

for (i = 0; i < num_objs; i++) {
fread(p, sizeof(struct obj), 1, stdin);
if (p->ident == 0x4442) return 0;
/¥ ... %/ p++; }

return objs; }

Overflow example questions

1. What's a value of num objs that would trigger an
overflow?

® Think back to 2021 on how multiplication overflows
2. Why is the p->ident check relevant to
exploitability?
http://wuw-users.cselabs.umn.edu/classes/Spring-2023/
csci4271/slides/02/overflow-eg.c




Outline

Code auditing

Auditing is. ..

£) Reading code to find security bugs

£) Threat modeling comes first, tells you what kinds of
bugs you're looking for

£) Bug fixing comes next (might be someone else’s job)

Tiers and triage

©) You might not have time to do a complete job, so
use auditing time strategically

£) Which bugs are most likely, and easiest to find?

©) Triage into definitely safe, definitively unsafe, hard to

tell
® Hard to tell might be improved even if safe

Threat model and taint

£) Vulnerability depends on what an attacker might
control

) Another word for attacker-controlled is “tainted”

£) Threat model is the best source of tainting

information
® Of course, can always be conservative

Where to look for problems

o) If you can't read all the code carefully, search for
indicators of common danger spots

® For format strings, look for printf
® For buffer overflows, look at buffers and copying functions

Ideal: proof

£) Given enough time, for each dangerous spot, be able
to convince someone:
® Proof of safety: reasons why a bug could never happen,
could turn into assertions
® Proof of vulnerability: example of tainted input that
causes a crash




