CSci 8271
Security and Privacy in Computing
Day 16: Token-level fuzzing

Stephen McCamant
University of Minnesota

Input fuzzing in user space

©) Testing code like libraries or parsers by randomly
generating inputs

£) Commonly, start with real seed inputs, then
randomly modify (mutate) them

£) Coverage (AFL) or other feedback guides the search
in interesting directions

Trade-offs of byte mutation and grammars

£) Mutations are often just byte-level changes
® Replace, flip bit, insert, delete, splice
©) Alternative: have the fuzzing tool know the input
grammar

® Can be used for pure generation, or grammar-aware
mutation

£) Common disadvantages of grammar-based fuzzing:

® Building the grammar is extra work, and it can be wrong
® The grammar may miss interesting (e.g, illegal) inputs

Token-level fuzzing approach, JavaScript

©) Middle ground: fuzz input as a sequence of tokens
® Legal tokens are curated similar to a grammar
® Token sequence mutated like a byte sequence

£) Security application: JavaScript JITs

® Security sensitive because JS comes from untrusted
sites
® Relatively complex language and DOM

Comparison and bug-finding results

©) Applied to JS engines of top-4 browsers
® Generally favorable comparison with vanilla AFL,
grammar-based tools
® CodeAlchemist with a large seed set gets better block
coverage
©) Also including a 60-day solo run, 27 unique new
bugs found
® Over $10,000 in bug bounties

Future generalization and improvement

£) New applications would need token definitions, still
easier than a full grammar

£) Could combine with smarter seed selection

£) Apply AFL scalability changes for many edges and
gueue entries

£) Ensemble approach with other JS fuzzers

