CSci 8271
Security and Privacy in Computing
Day 1. Kernel debloating and hardening

Stephen McCamant
University of Minnesota

Bloat and security risk

£) Security bugs are often found in code that wasn't
actually needed
® Heartbleed, log4shell are well-known examples
£) The Linux kernel has over 30MLOC, your app
doesn't need it all

Static vs. dynamic reachability

) Static: what code appears reachable in the call graph

©) Dynamic: what code executes under some test
cases

£) What to do with the large gap between them?

©) This paper: apply otherwise-expensive hardening
techniques

Shadow stack and CFI

) Shadow stack: save return addresses in a safe place

separate from variables
® Shadow stack location is randomized to make hard to
otherwise access

£) (Forward-edge) CFl: enforce legal target set for
indirect jumps
® Legal targets in a 2-level page-table-like structure

Code versions and context switching

©) One version unprotected, one version hardened

£) One set of dynamically reachable functions for each
application and system call
® Padding to ensure layout consistency
©) Switching implemented by changing nested page
tables via a hypervisor

Security and performance results

£) Median 0.2%, max 487% of code is reachable per
syscall

£) 5/10 vulnerabilities and 4/5 payloads are blocked

©) Syscall overhead goes from 0.43us to 3.25us

£) Worst overhead is for nginx serving small files, 37%

©) Redis (repeating syscalls) and SPEC CPU (fewer
syscalls) are faster




