
CSci 4271W
Development of Secure Software Systems

Day 27: Testing and usability
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

ROC curve exercise, cont’d

Testing and fuzzing

Announcements intermission

Usability and security

Usable security example areas

Where are these in ROC space?

A if (iris()) return REJECT; else return ACCEPT;

B return REJECT;

C if (iris()) return ACCEPT; else return REJECT;

D if (iris() && pitch()) return ACCEPT; else return REJECT;

E return ACCEPT;

F if (rand() & 1) return ACCEPT; else return REJECT;

G if (pitch()) return ACCEPT; else return REJECT;

H if (iris() || pitch()) return ACCEPT; else return REJECT;

Outline

ROC curve exercise, cont’d

Testing and fuzzing

Announcements intermission

Usability and security

Usable security example areas

Testing and security

“Testing shows the presence, not the absence of
bugs” – Dijkstra
Easy versions of some bugs can be found by
targeted tests:

Buffer overflows: long strings
Integer overflows: large numbers
Format string vulnerabilities: %x

Random or fuzz testing

Random testing can also sometimes reveal bugs

Original ‘fuzz’ (Miller): program </dev/urandom

Even this was surprisingly effective

Mutational fuzzing

Instead of totally random inputs, make small random
changes to normal inputs

Changes are called mutations

Benign starting inputs are called seeds

Good seeds help in exercising interesting/deep
behavior

Grammar-based fuzzing

Observation: it helps to know what correct inputs
look like

Grammar specifies legal patterns, run backwards
with random choices to generate

Generated inputs can again be basis for mutation

Most commonly used for standard input formats
Network protocols, JavaScript, etc.

What if you don’t have a grammar?

Input format may be unknown, or buggy and limited

Writing a grammar may be too much manual work

Can the structure of interesting inputs be figured out
automatically?

Coverage-driven fuzzing

Instrument code to record what code is executed

An input is interesting if it executes code that was
not executed before

Only interesting inputs are used as basis for future
mutation

AFL

Best known open-source tool, pioneered
coverage-driven fuzzing

American Fuzzy Lop, a breed of rabbits

Stores coverage information in a compact hash table

Compiler-based or binary-level instrumentation

Has a number of other optimizations

Outline

ROC curve exercise, cont’d

Testing and fuzzing

Announcements intermission

Usability and security

Usable security example areas

Last parts of the course

Today is the last lecture

Monday 5/2 is the last lab, also:
Due date for Project 2
Last date to submit SRTs

No meetings or assignments during finals

Outline

ROC curve exercise, cont’d

Testing and fuzzing

Announcements intermission

Usability and security

Usable security example areas

Users are not ‘ideal components’

Frustrates engineers: cannot give users instructions
like a computer

Closest approximation: military

Unrealistic expectations are bad for security

Most users are benign and sensible

On the other hand, you can’t just treat users as
adversaries

Some level of trust is inevitable
Your institution is not a prison

Also need to take advantage of user common sense
and expertise

A resource you can’t afford to pass up

Don’t blame users

“User error” can be the end of a discussion

This is a poor excuse

Almost any “user error” could be avoidable with
better systems and procedures

Users as rational

Economic perspective: users have goals and pursue
them

They’re just not necessarily aligned with security

Ignoring a security practice can be rational if the
rewards is greater than the risk

Perspectives from psychology

Users become habituated to experiences and
processes

Learn “skill” of clicking OK in dialog boxes

Heuristic factors affect perception of risk
Level of control, salience of examples

Social pressures can override security rules
“Social engineering” attacks

User attention is a resource

Users have limited attention to devote to security
Exaggeration: treat as fixed

If you waste attention on unimportant things, it won’t
be available when you need it

Fable of the boy who cried wolf

Research: ecological validity

User behavior with respect to security is hard to
study

Experimental settings are not like real situations

Subjects often:
Have little really at stake
Expect experimenters will protect them
Do what seems socially acceptable
Do what they think the experimenters want

Research: deception and ethics

Have to be very careful about ethics of experiments
with human subjects

Enforced by institutional review systems

When is it acceptable to deceive subjects?
Many security problems naturally include deception

Outline

ROC curve exercise, cont’d

Testing and fuzzing

Announcements intermission

Usability and security

Usable security example areas

Email encryption

Technology became available with PGP in the early
90s

Classic depressing study: “Why Johnny can’t
encrypt: a usability evaluation of PGP 5.0” (USENIX
Security 1999)

Still an open “challenge problem”

Also some other non-UI difficulties: adoption, govt.
policy

Phishing

Attacker sends email appearing to come from an
institution you trust

Links to web site where you type your password,
etc.

Spear phishing: individually targeted, can be much
more effective

Phishing defenses

Educate users to pay attention to X:
Spelling ! copy from real emails
URL ! homograph attacks
SSL “lock” icon ! fake lock icon, or SSL-hosted attack

Extended validation (green bar) certificates

Phishing URL blacklists

SSL warnings: prevalence

Browsers will warn on SSL certificate problems

In the wild, most are false positives
foo.com vs. www.foo.com
Recently expired
Technical problems with validation
Self-signed certificates (HA2)

Classic warning-fatigue danger

Older SSL warning

SSL warnings: effectiveness

Early warnings fared very poorly in lab settings

Recent browsers have a new generation of designs:
Harder to click through mindlessly
Persistent storage of exceptions

Recent telemetry study: they work pretty well

Modern Firefox warning

Modern Firefox warning (2) Modern Firefox warning (3)

Spam-advertised purchases

“Replica” Rolex watches, herbal V!@gr@, etc.

This business is clearly unscrupulous; if I pay, will I
get anything at all?
Empirical answer: yes, almost always

Not a scam, a black market
Importance of credit-card bank relationships

Advance fee fraud

“Why do Nigerian Scammers say they are from
Nigeria?” (Herley, WEIS 2012)
Short answer: false positives

Sending spam is cheap
But, luring victims is expensive
Scammer wants to minimize victims who respond but
ultimately don’t pay

Trusted UI

Tricky to ask users to make trust decisions based
on UI appearance

Lock icon in browser, etc.

Attacking code can draw lookalike indicators
Lock favicon
Picture-in-picture attack

Smartphone app permissions

Smartphone OSes have more fine-grained
per-application permissions

Access to GPS, microphone
Access to address book
Make calls

Phone also has more tempting targets

Users install more apps from small providers

Permissions manifest

Android approach: present listed of requested
permissions at install time
Can be hard question to answer hypothetically

Users may have hard time understanding implications

User choices seem to put low value on privacy

Time-of-use checks

iOS approach: for narrower set of permissions, ask
on each use

Proper context makes decisions clearer

But, have to avoid asking about common things

iOS app store is also more closely curated

Trusted UI for privileged actions

Trusted UI works better when asking permission
(e.g., Oakland’12)
Say, “take picture” button in phone app

Requested by app
Drawn and interpreted by OS
OS well positioned to be sure click is real

Little value to attacker in drawing fake button

