
CSci 4271W
Development of Secure Software Systems

Day 17: Web security part 1
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

An isolation example

The web from a security perspective

Cross-site scripting

Announcements intermission

More cross-site risks

SQL injection

Modern example: Chrom(ium)

Separates “browser kernel” from less-trusted
“rendering engine”

Pragmatic, keeps high-risk components together

Experimented with various Windows and Linux
sandboxing techniques

Blocked 70% of historic vulnerabilities, not all new
ones

http://seclab.stanford.edu/websec/chromium/

Outline

An isolation example

The web from a security perspective

Cross-site scripting

Announcements intermission

More cross-site risks

SQL injection

Once upon a time: the static web

HTTP: stateless file download protocol
TCP, usually using port 80

HTML: markup language for text with formatting and
links

All pages public, so no need for authentication or
encryption

Web applications

The modern web depends heavily on active software

Static pages have ads, paywalls, or “Edit” buttons

Many web sites are primarily forms or storefronts

Web hosted versions of desktop apps like word
processing

Server programs

Could be anything that outputs HTML

In practice, heavy use of databases and frameworks

Wide variety of commercial, open-source, and
custom-written
Flexible scripting languages for ease of development

PHP, Ruby, Perl, etc.

Client-side programming

Java: nice language, mostly moved to other uses

ActiveX: Windows-only binaries, no sandboxing
Glad to see it on the way out

Flash and Silverlight: last important use was DRM-ed
video

Core language: JavaScript

JavaScript and the DOM

JavaScript (JS) is a dynamically-typed prototype-OO
language

No real similarity with Java

Document Object Model (DOM): lets JS interact with
pages and the browser

Extensive security checks for untrusted-code model

Same-origin policy

Origin is a tuple (scheme, host, port)
E.g., (http, www.umn.edu, 80)

Basic JS rule: interaction is allowed only with the
same origin

Different sites are (mostly) isolated applications

GET, POST, and cookies

GET request loads a URL, may have parameters
delimited with ?, &, =

Standard: should not have side-effects

POST request originally for forms
Can be larger, more hidden, have side-effects

Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

“Web attacker” owns their own site
(www.attacker.com)

And users sometimes visit it
Realistic reasons: ads, SEO

“Network attacker” can view and sniff unencrypted
data

Unprotected coffee shop WiFi

Outline

An isolation example

The web from a security perspective

Cross-site scripting

Announcements intermission

More cross-site risks

SQL injection

XSS: HTML/JS injection

Note: CSS is “Cascading Style Sheets”

Another use of injection template

Attacker supplies HTML containing JavaScript (or
occasionally CSS)
OWASP’s most prevalent weakness

A category unto itself
Easy to commit in any dynamic page construction

Why XSS is bad (and named that)

attacker.com can send you evil JS directly

But XSS allows access to bank.com data

Violates same-origin policy

Not all attacks actually involve multiple sites

Reflected XSS

Injected data used immediately in producing a page

Commonly supplied as query/form parameters

Classic attack is link from evil site to victim site

Persistent XSS

Injected data used to produce page later

For instance, might be stored in database

Can be used by one site user to attack another user
E.g., to gain administrator privilege

DOM-based XSS

Injection occurs in client-side page construction

Flaw at least partially in code running on client

Many attacks involve mashups and inter-site
communication

No string-free solution

For server-side XSS, no way to avoid string
concatenation
Web page will be sent as text in the end

Research topic: ways to change this?

XSS especially hard kind of injection

Danger: complex language embedding

JS and CSS are complex languages in their own
right
Can appear in various places with HTML

But totally different parsing rules

Example: "..." used for HTML attributes and JS
strings

What happens when attribute contains JS?

Danger: forgiving parsers

History: handwritten HTML, browser competition

Many syntax mistakes given “likely” interpretations

Handling of incorrect syntax was not standardized

Sanitization: plain text only

Easiest case: no tags intended, insert at document
text level

Escape HTML special characters with entities like
< for <

OWASP recommendation: & < > " ' /

Sanitization: context matters

An OWASP document lists 5 places in a web page
you might insert text

For the rest, “don’t do that”

Each one needs a very different kind of escaping

Sanitization: tag allow-listing

In some applications, want to allow benign markup
like

But, even benign tags can have JS attributes

Handling well essentially requires an HTML parser
But with an adversarial-oriented design

Don’t deny-list

Browser capabilities continue to evolve

Attempts to list all bad constructs inevitably
incomplete

Even worse for XSS than other injection attacks

Filter failure: one-pass delete

Simple idea: remove all occurrences of <script>

What happens to <scr<script>ipt>?

Filter failure: UTF-7

You may have heard of UTF-8
Encode Unicode as 8-bit bytes

UTF-7 is similar but uses only ASCII

Encoding can be specified in a <meta> tag, or some
browsers will guess

+ADw-script+AD4-

Filter failure: event handlers

Put this on something the user will be tempted to
click on

There are more than 100 handlers like this
recognized by various browsers

Use good libraries

Coding your own defenses will never work

Take advantage of known good implementations

Best case: already built into your framework
Disappointingly rare

Content Security Policy

Added HTTP header, W3C recommendation

Lets site opt-in to stricter treatment of embedded
content, such as:

No inline JS, only loaded from separate URLs
Disable JS eval et al.

Has an interesting violation-reporting mode

Outline

An isolation example

The web from a security perspective

Cross-site scripting

Announcements intermission

More cross-site risks

SQL injection

Note to early readers

This is the section of the slides most likely to change
in the final version

If class has already happened, make sure you have
the latest slides for announcements

Outline

An isolation example

The web from a security perspective

Cross-site scripting

Announcements intermission

More cross-site risks

SQL injection

HTTP header injection

Untrusted data included in response headers

Can include CRLF and new headers, or premature
end to headers

AKA “response splitting”

Content sniffing

Browsers determine file type from headers,
extension, and content-based guessing

Latter two for � 1% server errors

Many sites host “untrusted” images and media

Inconsistencies in guessing lead to a kind of XSS
E.g., “chimera” PNG-HTML document

Cross-site request forgery

Certain web form on bank.com used to wire money

Link or script on evil.com loads it with certain
parameters

Linking is exception to same-origin

If I’m logged in, money sent automatically

Confused deputy, cookies are ambient authority

CSRF prevention

Give site’s forms random-nonce tokens
E.g., in POST hidden fields
Not in a cookie, that’s the whole point

Reject requests without proper token
Or, ask user to re-authenticate

XSS can be used to steal CSRF tokens

Open redirects

Common for one page to redirect clients to another

Target should be validated
With authentication check if appropriate

Open redirect: target supplied in parameter with no
checks

Doesn’t directly hurt the hosting site
But reputation risk, say if used in phishing
We teach users to trust by site

Outline

An isolation example

The web from a security perspective

Cross-site scripting

Announcements intermission

More cross-site risks

SQL injection

Relational model and SQL

Relational databases have tables with rows and
single-typed columns

Used in web sites (and elsewhere) to provide
scalable persistent storage

Allow complex queries in a declarative language SQL

Example SQL queries

SELECT name, grade FROM Students WHERE

grade < 60 ORDER BY name;

UPDATE Votes SET count = count + 1 WHERE

candidate = 'John';

Template: injection attacks

Your program interacts with an interpreted language

Untrusted data can be passed to the interpreter

Attack data can break parsing assumptions and
execute arbitrary commands

SQL + injection

Why is this named most critical web app. risk?

Easy mistake to make systematically

Can be easy to exploit

Database often has high-impact contents
E.g., logins or credit cards on commerce site

Strings do not respect syntax

Key problem: assembling commands as strings

"WHERE name = '$name';"

Looks like $name is a string

Try $name = "me' OR grade > 80; --"

Using tautologies

Tautology: formula that’s always true

Often convenient for attacker to see a whole table

Classic: OR 1=1

Non-string interfaces

Best fix: avoid constructing queries as strings

SQL mechanism: prepared statement
Original motivation was performance

Web languages/frameworks often provide other
syntax

Retain functionality: escape

Sanitizing data is transforming it to prevent an attack

Escaped data is encoded to match language rules
for literal

E.g., \" and \n in C

But many pitfalls for the unwary:
Differences in escape syntax between servers
Must use right escape for context: not everything’s a
string

Lazy sanitization: allow-listing

Allow only things you know to be safe/intended

Error or delete anything else

Short allow-list is easy and relatively easy to secure

E.g., digits only for non-negative integer

But, tends to break benign functionality

Poor idea: deny-listing

Space of possible attacks is endless, don’t try to
think of them all

Want to guess how many more comment formats
SQL has?

Particularly silly: deny 1=1

Attacking without the program

Often web attacks don’t get to see the program
Not even binary, it’s on the server

Surmountable obstacle:
Guess natural names for columns
Harvest information from error messages

Blind SQL injection

Attacking with almost no feedback

Common: only “error” or “no error”

One bit channel you can make yourself: if (x) delay
10 seconds

Trick to remember: go one character at a time

Injection beyond SQL

Shell commands, format strings, XSS

XPath/XQuery: queries on XML data

LDAP: queries used for authentication

