CSci 427\W
Development of Secure Software Systems
Day 16: OS Protection and Isolation

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Secure OS interaction

Avoid special privileges

£) Require users to have appropriate permissions
® Rather than putting trust in programs

©) Dangerous pattern 1. setuid/setgid program
£) Dangerous pattern 2: privileged daemon
©) But, sometimes unavoidable (e.g., email)

Prefer file descriptors

£) Maintain references to files by keeping them open
and using file descriptors, rather than by name

£) References same contents despite file system
changes

©) Use openat, etc, variants to use FD instead of
directory paths

Prefer absolute paths

©) Use full paths (starting with /) for programs and files
©) $PATH under local user control

©) Initial working directory under local user control
® But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

£) Each directory component in a path must be write
protected

£) Read-only file in read-only directory can be changed
if a parent directory is modified

Don't separate check from use

©) Avoid pattern of eg, access then open
©) Instead, just handle failure of open
® You have to do this anyway

©) Multiple references allow races
® And access also has a history of bugs

Be careful with temporary files

©) Create files exclusively with tight permissions and
never reopen them
® See detailed recommendations in Wheeler (q.v.)
£) Not quite good enough: reopen and check matching
device and inode
® Fails with sufficiently patient attack

Give up privileges

£) Using appropriate combinations of set*id functions
® Alas, details differ between Unix variants

©) Best: give up permanently
£) Second best: give up temporarily

) Detailed recommendations: Setuid Demystified
(USENIX'02)

Allow-list environment variables

£) Can change the behavior of called program in
unexpected ways
£) Decide which ones are necessary
® As few as possible

£) Save these, remove any others

For more details...

©) The first external reading is chapters from a
web-hosted book by David A. Wheeler
©) Reading questions will be due one week after they

are posted on Canvas
® In this case, next Wednesday

Outline

OS: protection and isolation

OS security topics

£) Resource protection

£) Process isolation

©) User authentication (will cover later)
£) Access control (already covered)

Protection and isolation

£) Resource protection: prevent processes from
accessing hardware

£) Process isolation: prevent processes from interfering
with each other

£) Design: by default processes can do neither
£) Must request access from operating system

Reference monitor

£) Complete mediation: all accesses are checked

©) Tamperproof: the monitor is itself protected from
modification

©) Small enough to be thoroughly verified

Hardware basis: memory protection

©) Historic: segments

£) Modern: paging and page protection
= Memory divided into pages (e.qg. 4k)
® Every process has own virtual to physical page table
® Pages also have R/W/X permissions

Linux example

OXFEFFFFFFFFFFFFrs

Kernel
use only
0x8

grows|down

Mainlstack

0x40000000

METeap

Static code + data

0x400000

Usually unused

Hardware basis: supervisor bit

£) Supervisor (kernel) mode: all instructions available

£) User mode: no hardware or VM control instructions

£) Only way to switch to kernel mode is specified entry
point

£) Also generalizes to multiple “rings”

Outline

More choices for isolation

Ideal: least privilege

£) Programs and users should have the most limited
set of powers needed to do their job
£) Presupposes that privileges are suitably divisible
® Contrast: Unix root

“Trusted”, TCB

o) In security, “trusted” is a bad word

©) X is trusted: X can break your security
©) “Untrusted” = okay if it's evil

©) Trusted Computing Base (TCB): minimize

Restricted languages

£) Main application: code provided by untrusted parties
£) Packet filters in the kernel

£) JavaScript in web browsers
® Also Java, Flash ActionScript, etc.

SFI

) Software-based Fault Isolation

©) Instruction-level rewriting
® Analogous to but predates control-flow integrity

©) Limit memory stores and sometimes loads
©) Can't jump out except to designated points
©) Eg., Google Native Client

Separate processes

£) OS (and hardware) isolate one process from another

£) Pay overhead for creation and communication

©) System call interface allows many possibilities for
mischief

System-call interposition

£) Trusted process examines syscalls made by
untrusted

©) Implement via ptrace (like strace, gdb) or via kernel
change

©) Easy policy: deny

Interposition challenges

£) Argument values can change in memory (TOCTTOU)
£) OS objects can change (TOCTTOU)

£) How to get canonical object identifiers?

©) Interposer must accurately model kernel behavior

) Details: Garfinkel (NDSS'03)

Separate users

©) Reuse OS facilities for access control

©) Unit of trust: program or application

©) Older example: gmail

©) Newer example: Android

©) Limitation: lots of things available to any user

chroot

£ Unix system call to change root directory
£) Restrict/virtualize file system access

£) Only available to root

£) Does not isolate other namespaces

0OS-enabled containers

©) One kernel, but virtualizes all namespaces
©) FreeBSD jails, Linux LXC, Solaris zones, etc.
©) Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

£) Presents hardware-like interface to an untrusted
kernel

£) Strong isolation, full administrative complexity

©) /0 interface looks like a network, etc.

Virtual machine designs

o) (Type 1) hypervisor: ‘superkernel’ underneath VMs

©) Hosted: regular OS underneath VMs

) Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

£) Hardware based: fastest, now common
©) Partial translation: e.g,, original VMware

©) Full emulation: eg. QEMU proper
® Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

©) Separates “browser kernel” from less-trusted
“rendering engine”
® Pragmatic, keeps high-risk components together
©) Experimented with various Windows and Linux
sandboxing techniques
©) Blocked 70% of historic vulnerabilities, not all new
ones

) http://seclab.stanford.edu/websec/chromium/

