CSci 427\W
Development of Secure Software Systems
Day 15: Race Conditions and OS Protection

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Shell code injection and related threats, contd

Shell code injection

£) The command shell is convenient to use, especially
in scripts
® In C: system, popen
©) But it is bad to expose the shell's power to an
attacker

©) Key pitfall: assembling shell commands as strings

Shell code injection example

©) Benign: system("cp $argl $arg2"), argl =
"filel.txt"

£) Attack: argl = "a b; echo Gotcha"

) Command: "cp a b; echo Gotcha file2.txt"

Different shells and multiple interpretation

) Complex Unix systems include shells at multiple
levels, making these issues more complex

® Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

) Other shell-like programs also have caveats with
levels of interpretation
® Tcl before version 9 interpreted leading zeros as octal

Related local dangers

£) File names might contain any character except / or
the null character

) The PATH environment variable is user-controllable,
So cp may not be the program you expect

£) Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem

©) In Unix, splitting a command line into words is the
shell's job
® String — argv array
mgrep a b cVs. grep ’a b’ ¢
©) Choice of separator characters (default space, tab,
newline) is configurable
©) Exploit system("/bin/uname")
©) In modern shells, improved by not taking from
environment

Outline

Race conditions and related threats

Bad/missing error handling

©) Under what circumstances could each system call
fail?

) Careful about rolling back after an error in the middle
of a complex operation

©) Fail to drop privileges = run untrusted code anyway

©) Update file when disk full = truncate

Race conditions

£) Two actions in parallel; result depends on which
happens first

©) Usually attacker racing with you
1. Write secret data to file

2. Restrict read permissions on file
£) Many other examples

Classic races: files in /tmp

£) Temp filenames must already be unique
©) But “unguessable” is a stronger requirement

©) Unsafe design (mktemp (3)): function to return
unused name

£) Must use 0_EXCL for real atomicity

TOCTTOU gaps

£) Time-of-check (to) time-of-use races

1. Check it's OK to write to file
2. Write to file

£) Attacker changes the file between steps 1and 2
£) Just get lucky, or use tricks to slow you down

Read It Twice (WOOT'12)

©) Smart TV (running Linux) only accepts signed apps
on USB sticks

1. Check signature on file

2. Install file

£) Malicious USB device replaces app between steps
©) TV “rooted”/"jailbroken”

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1;
struct stat s;
stat(path, &s)
if (!S_ISREG(s.st_mode))
error("only regular files allowed");
else fd = open(path, 0_-RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !S_ISREG(s.st mode))
error("only regular files allowed");
else fd = open(path, O_RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !'S_ISREG(s.st mode))
error("only regular files allowed");
else fd = open(path, 0_RDONLY);
return fd;

Changing file references

£) With symbolic links
£) With hard links
©) With changing parent directories

Directory traversal with . .

£) Program argument specifies file, found in directory
files
©) What about files/../../../../etc/passud?

Outline

Project 1 expectations

Report overall length

£) 4-5 pages in US Letter (8.5 x 1iin), 1inch margins

£) Double-spaced 10 point Times, Times Roman, or
Computer Modern Roman

£ Figures, code examples, etc, go at the end, don't
count in the 4-5 pages.

£) Will submit online as PDF

Threat modeling

©) You should include at least one data-flow diagram

©) The diagram should have enough detail to inform
your threat modeling
® Eg, bcimgview should not be a single component
©) Threats should include, but are not limited to, the
ones you'll address in the auditing

Auditing for vulnerabilities

£) There are at least four bugs that are definitively
problematic
® You need to identify at least three
£) Good to also include:

® Dangerous locations that are not vulnerable in the current
program

® Dangerous locations that you're not sure if they can be
attacked

Attacks

©) Include three for full credit, you should be sure they
work

£ Include enough detail to convince me that you really
did make the attack work

) For attack inputs, consider showing figure of hex
dump with relevant parts highlighted

Rules reminders

£) This is an individual assignment, not collaborative
® Non-spoiler Piazza or office-hour discussions are OK

£) The writing should be entirely your own
£) Use of public, non-class materials is allowed, but

should be acknowledged
® No specific requirement for citation format for this project

Schedule

) First report, covering modeling, auditing, and attacks,
due Friday March 25th

©) Revised report with bug fixed due Friday April 8th

Outline

Secure OS interaction

Avoid special privileges

£) Require users to have appropriate permissions
® Rather than putting trust in programs

©) Dangerous pattern 1. setuid/setgid program
£) Dangerous pattern 2: privileged daemon
©) But, sometimes unavoidable (e.g., email)

Prefer file descriptors

£) Maintain references to files by keeping them open
and using file descriptors, rather than by name

£) References same contents despite file system
changes

©) Use openat, etc, variants to use FD instead of
directory paths

Prefer absolute paths

©) Use full paths (starting with /) for programs and files
©) $PATH under local user control

©) Initial working directory under local user control
® But FD-like, so can be used in place of openat if missing

Prefer fully trusted paths

£) Each directory component in a path must be write
protected

£) Read-only file in read-only directory can be changed
if a parent directory is modified

Don't separate check from use

©) Avoid pattern of eg, access then open
©) Instead, just handle failure of open
® You have to do this anyway

©) Multiple references allow races
® And access also has a history of bugs

Be careful with temporary files

©) Create files exclusively with tight permissions and
never reopen them
® See detailed recommendations in Wheeler (q.v.)
£) Not quite good enough: reopen and check matching
device and inode
® Fails with sufficiently patient attack

Give up privileges

£) Using appropriate combinations of set*id functions
® Alas, details differ between Unix variants

©) Best: give up permanently
£) Second best: give up temporarily

) Detailed recommendations: Setuid Demystified
(USENIX'02)

Allow-list environment variables

£) Can change the behavior of called program in
unexpected ways
£) Decide which ones are necessary
® As few as possible

£) Save these, remove any others

For more details...

©) The first external reading is chapters from a
web-hosted book by David A. Wheeler

©) Reading questions will be due one week after they
are posted on Canvas

Outline

OS: protection and isolation

OS security topics

£) Resource protection

£) Process isolation

©) User authentication (will cover later)
£) Access control (already covered)

Protection and isolation

£) Resource protection: prevent processes from
accessing hardware

£) Process isolation: prevent processes from interfering
with each other

£) Design: by default processes can do neither
£) Must request access from operating system

Reference monitor

£) Complete mediation: all accesses are checked

©) Tamperproof: the monitor is itself protected from
modification

©) Small enough to be thoroughly verified

Hardware basis: memory protection

©) Historic: segments

£) Modern: paging and page protection
= Memory divided into pages (e.qg. 4k)
® Every process has own virtual to physical page table
® Pages also have R/W/X permissions

Linux example

OXFEFFFFFFFFFFFFrs

Kernel
use only
0x8

grows|down

Mainlstack

0x40000000

METeap

Static code + data

0x400000

Usually unused

Hardware basis: supervisor bit

£) Supervisor (kernel) mode: all instructions available

£) User mode: no hardware or VM control instructions

£) Only way to switch to kernel mode is specified entry
point

£) Also generalizes to multiple “rings”

Outline

More choices for isolation

Ideal: least privilege

£) Programs and users should have the most limited
set of powers needed to do their job
£) Presupposes that privileges are suitably divisible
® Contrast: Unix root

“Trusted”, TCB

o) In security, “trusted” is a bad word

©) X is trusted: X can break your security
©) “Untrusted” = okay if it's evil

©) Trusted Computing Base (TCB): minimize

Restricted languages

£) Main application: code provided by untrusted parties
£) Packet filters in the kernel

£) JavaScript in web browsers
® Also Java, Flash ActionScript, etc.

SFI

) Software-based Fault Isolation

©) Instruction-level rewriting
® Analogous to but predates control-flow integrity

©) Limit memory stores and sometimes loads
©) Can't jump out except to designated points
©) Eg., Google Native Client

Separate processes

£) OS (and hardware) isolate one process from another

£) Pay overhead for creation and communication

©) System call interface allows many possibilities for
mischief

System-call interposition

£) Trusted process examines syscalls made by
untrusted

©) Implement via ptrace (like strace, gdb) or via kernel
change

©) Easy policy: deny

Interposition challenges

£) Argument values can change in memory (TOCTTOU)
£) OS objects can change (TOCTTOU)

£) How to get canonical object identifiers?

©) Interposer must accurately model kernel behavior

) Details: Garfinkel (NDSS'03)

Separate users

©) Reuse OS facilities for access control

©) Unit of trust: program or application

©) Older example: gmail

©) Newer example: Android

©) Limitation: lots of things available to any user

chroot

£ Unix system call to change root directory
£) Restrict/virtualize file system access

£) Only available to root

£) Does not isolate other namespaces

0OS-enabled containers

©) One kernel, but virtualizes all namespaces
©) FreeBSD jails, Linux LXC, Solaris zones, etc.
©) Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

£) Presents hardware-like interface to an untrusted
kernel

£) Strong isolation, full administrative complexity

©) /0 interface looks like a network, etc.

Virtual machine designs

o) (Type 1) hypervisor: ‘superkernel’ underneath VMs

©) Hosted: regular OS underneath VMs

) Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

£) Hardware based: fastest, now common
©) Partial translation: e.g,, original VMware

©) Full emulation: eg. QEMU proper
® Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

©) Separates “browser kernel” from less-trusted
“rendering engine”
® Pragmatic, keeps high-risk components together
©) Experimented with various Windows and Linux
sandboxing techniques
©) Blocked 70% of historic vulnerabilities, not all new
ones

) http://seclab.stanford.edu/websec/chromium/

