CSci 427\W
Development of Secure Software Systems
Day 13: OS-level Injection Threats

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Injection vulnerabilities: format strings

Injection vulnerabilities

£) Common dangerous pattern: interpreter code with
attacker control

©) Interpreted language example: eval

£) OS example: shell script injection

©) Web examples: JavaScript (XSS), SQL injection
©) C library example: printf format string

Format string attack: overwrite

©) %n specifier: store number of chars written so far to
pointer arg

® Benign but uncommon use: account for length in other
formatting

£) Advance format arg pointer to other
attacker-controlled data

£) Control number of chars written with padding
£) Net result is a “write-what-where” primitive

Practical format string challenges

£) Attacker usually must control format as well as one
or more arguments
£) Writing a big value requires impractical output size

® Workaround 1. overwrite two bytes with %hn
® Workaround 2: use overlapping unaligned write to control
byte by byte

Format string defenses

£) Compilers will warn for printf that looks like it
should just be puts
£) Several platforms have decided to just remove %n
® Android Bionic, Visual Studio
o) Linux glibc by default will block %n if the format
string is writeable
£) Major remaining use is information disclosure

Demo: first steps of BCLPR format attack

©) In demo: quick audit, supplying format

Outline

Shell code injection and related threats

Two kinds of privilege escalation

©) Local exploit: give higher privilege to a reqular user
® Eg, caused by bug in setuid program or OS kernel
©) Remote exploit: give access to an external user
who doesn't even have an account
® Eg, caused by bug in network-facing server or client

Shell code injection

©) The command shell is convenient to use, especially
in scripts
® In C: system, popen
£)But it is bad to expose the shell's power to an
attacker
©) Key pitfall: assembling shell commands as strings

£) Note: different from binary “shellcode”

Shell code injection example

©) Benign: system("cp $argl $arg2"), argl =
"filel.txt"

©) Attack: argl = "a b; echo Gotcha"

©) Command: "cp a b; echo Gotcha file2.txt"

£) Not a complete solution: prohibit *;"

The structure problem

©) What went wrong here?

£) Basic mistake: assuming string concatenation will
respect language grammar

® Eg, that attacker supplied “filename” will be interpreted
that way

Best fix: avoiding the shell

©) Avoid letting untrusted data get near a shell

) For instance, call external programs with lower-level
interfaces
mEg, fork and exec instead of system

©) May constitute a security/flexibility trade-off

Less reliable: text processing

£) Allow-list: known-good characters are allowed,
others prohibited
® Eg, username consists only of letters
® Safest, but potential functionality cost
©) Deny-list: known-bad characters are prohibited,
others allowed
® Easy to miss some bad scenarios
£) "Sanitization”: transform bad characters into good
® Same problem as deny-list, plus extra complexity

Terminology note

) Historically the most common terms for allow-list
and deny-list have been “whitelist” and “blacklist”
respectively

©) These terms have been criticized for a problematic
“white=good"”, “black=bad" association

©) The push to avoid the terms got significant additional
attention in summer 2020, but is still somewhat
political and in flux

Different shells and multiple interpretation

£) Complex Unix systems include shells at multiple
levels, making these issues more complex

® Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

£) Other shell-like programs also have caveats with
levels of interpretation
® Tcl before version 9 interpreted leading zeros as octal

Related local dangers

©) File names might contain any character except / or
the null character

£) The PATH environment variable is user-controllable,
so cp may not be the program you expect

©) Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem

) In Unix, splitting a command line into words is the
shell's job
® String — argv array
®grep a b cVvs. grep ’a b’ ¢

£) Choice of separator characters (default space, tab,
newline) is configurable

£) Exploit system("/bin/uname")

©) In modern shells, improved by not taking from
environment

Outline

Race conditions and related threats

Bad/missing error handling

£) Under what circumstances could each system call
fail?

£) Careful about rolling back after an error in the middle
of a complex operation

©) Fail to drop privileges = run untrusted code anyway

£) Update file when disk full = truncate

Race conditions

©) Two actions in parallel; result depends on which
happens first

©) Usually attacker racing with you

1. Write secret data to file

2. Restrict read permissions on file

©) Many other examples

Classic races: files in /tmp

£) Temp filenames must already be unique
) But “unguessable” is a stronger requirement

£) Unsafe design (mktemp (3)): function to return
unused name
£) Must use 0_EXCL for real atomicity

TOCTTOU gaps

©) Time-of-check (to) time-of-use races

1. Check it's OK to write to file
2. Write to file

©) Attacker changes the file between steps 1and 2
©) Just get lucky, or use tricks to slow you down

Read It Twice (WOOT'12)

£) Smart TV (running Linux) only accepts signed apps
on USB sticks

1. Check signature on file

2. Install file

£) Malicious USB device replaces app between steps
£ TV “rooted”/“jailbroken”

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1;
struct stat s;
stat (path, &s)
if (!S_ISREG(s.st_mode))
error("only regular files allowed");
else fd = open(path, O_RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !S_ISREG(s.st mode))
error("only regular files allowed");
else fd = open(path, 0_RDONLY);
return fd;

TOCTTOU example

int safe_open_file(char *path) {
int fd = -1, res;
struct stat s;
res = stat(path, &s)
if (res || !'S_ISREG(s.st_mode))
error("only regular files allowed");
else fd = open(path, O0_RDONLY);
return fd;

Changing file references

£) With symbolic links
£ With hard links
£) With changing parent directories

Directory traversal with . .

©) Program argument specifies file, found in directory
files

©) What about files/../../../../etc/passwd?

