
CSci 4271W
Development of Secure Software Systems

Day 13: OS-level Injection Threats
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Injection vulnerabilities: format strings

Shell code injection and related threats

Race conditions and related threats

Injection vulnerabilities

Common dangerous pattern: interpreter code with
attacker control

Interpreted language example: eval

OS example: shell script injection

Web examples: JavaScript (XSS), SQL injection

C library example: printf format string

Format string attack: overwrite

%n specifier: store number of chars written so far to
pointer arg

Benign but uncommon use: account for length in other
formatting

Advance format arg pointer to other
attacker-controlled data

Control number of chars written with padding

Net result is a “write-what-where” primitive

Practical format string challenges

Attacker usually must control format as well as one
or more arguments
Writing a big value requires impractical output size

Workaround 1: overwrite two bytes with %hn

Workaround 2: use overlapping unaligned write to control
byte by byte

Format string defenses

Compilers will warn for printf that looks like it
should just be puts

Several platforms have decided to just remove %n

Android Bionic, Visual Studio

Linux glibc by default will block %n if the format
string is writeable

Major remaining use is information disclosure

Demo: first steps of BCLPR format attack

In demo: quick audit, supplying format

Outline

Injection vulnerabilities: format strings

Shell code injection and related threats

Race conditions and related threats

Two kinds of privilege escalation

Local exploit: give higher privilege to a regular user
E.g., caused by bug in setuid program or OS kernel

Remote exploit: give access to an external user
who doesn’t even have an account

E.g., caused by bug in network-facing server or client

Shell code injection

The command shell is convenient to use, especially
in scripts

In C: system, popen

But it is bad to expose the shell’s power to an
attacker

Key pitfall: assembling shell commands as strings

Note: different from binary “shellcode”

Shell code injection example

Benign: system("cp $arg1 $arg2"), arg1 =
"file1.txt"

Attack: arg1 = "a b; echo Gotcha"

Command: "cp a b; echo Gotcha file2.txt"

Not a complete solution: prohibit ‘;’

The structure problem

What went wrong here?

Basic mistake: assuming string concatenation will
respect language grammar

E.g., that attacker supplied “filename” will be interpreted
that way

Best fix: avoiding the shell

Avoid letting untrusted data get near a shell

For instance, call external programs with lower-level
interfaces

E.g., fork and exec instead of system

May constitute a security/flexibility trade-off

Less reliable: text processing

Allow-list: known-good characters are allowed,
others prohibited

E.g., username consists only of letters
Safest, but potential functionality cost

Deny-list: known-bad characters are prohibited,
others allowed

Easy to miss some bad scenarios

“Sanitization”: transform bad characters into good
Same problem as deny-list, plus extra complexity

Terminology note

Historically the most common terms for allow-list
and deny-list have been “whitelist” and “blacklist”
respectively

These terms have been criticized for a problematic
“white=good”, “black=bad” association

The push to avoid the terms got significant additional
attention in summer 2020, but is still somewhat
political and in flux

Different shells and multiple interpretation

Complex Unix systems include shells at multiple
levels, making these issues more complex

Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

Other shell-like programs also have caveats with
levels of interpretation

Tcl before version 9 interpreted leading zeros as octal

Related local dangers

File names might contain any character except / or
the null character

The PATH environment variable is user-controllable,
so cp may not be the program you expect

Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem
In Unix, splitting a command line into words is the
shell’s job

String ! argv array
grep a b c vs. grep 'a b' c

Choice of separator characters (default space, tab,
newline) is configurable

Exploit system("/bin/uname")

In modern shells, improved by not taking from
environment

Outline

Injection vulnerabilities: format strings

Shell code injection and related threats

Race conditions and related threats

Bad/missing error handling

Under what circumstances could each system call
fail?

Careful about rolling back after an error in the middle
of a complex operation

Fail to drop privileges) run untrusted code anyway

Update file when disk full) truncate

Race conditions

Two actions in parallel; result depends on which
happens first

Usually attacker racing with you

1. Write secret data to file

2. Restrict read permissions on file

Many other examples

Classic races: files in /tmp

Temp filenames must already be unique

But “unguessable” is a stronger requirement

Unsafe design (mktemp(3)): function to return
unused name

Must use O EXCL for real atomicity

TOCTTOU gaps

Time-of-check (to) time-of-use races
1. Check it’s OK to write to file
2. Write to file

Attacker changes the file between steps 1 and 2

Just get lucky, or use tricks to slow you down

Read It Twice (WOOT’12)

Smart TV (running Linux) only accepts signed apps
on USB sticks

1. Check signature on file

2. Install file

Malicious USB device replaces app between steps

TV “rooted”/“jailbroken”

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1;

struct stat s;

stat(path, &s)

if (!S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

TOCTTOU example

int safe_open_file(char *path) f
int fd = -1, res;

struct stat s;

res = stat(path, &s)

if (res || !S ISREG(s.st mode))

error("only regular files allowed");

else fd = open(path, O RDONLY);

return fd;

g

Changing file references

With symbolic links

With hard links

With changing parent directories

Directory traversal with ..

Program argument specifies file, found in directory
files

What about files/../../../../etc/passwd?

