CSci 4271: Introduction to Computer Security

Problem Set 2 due: Wednesday April 27th, 2022

Ground Rules. This is an individual assignment. You may discuss the concepts behind these
questions with other students, but you should formulate your answers individually and your answers
must be entirely your own writing. You may use any paper or written online source that you find
relevant to the questions but you must explicitly reference any source you use besides the lectures,
labs, and readings. An electronic PDF copy of your solution should be submitted on Canvas by
11:59pm on Wednesday, April 27th.

1. OS interaction problems. (30 pts) The following C code appears in a program written to
run on a Unix system. The intent of this code is to write the message contained in the string
secret_string into a file named secret-file.txt. As indicated by the name of the file and the
use of the chmod system call to change the permissions on the file, the key security concern of this
code is to protect the confidentiality of the contents of the file. Other users on the system should
not be able to figure out the secret. Unfortunately, some features of this code prevent it from
reliably guaranteeing this. (If it matters for your answers, you can assume that the program is
running in a public directory with a umask of 0000.)

int res;
FILE *fh = fopen("secret-file.txt", "w");
if ('fh) {
fprintf(stderr, "Failed to open file for writing: %s\n",
strerror(errno));
exit(1);
}
res = fputs(secret_string, fh);
if (res == EOF) {
fprintf(stderr, "Write failed: %s\n", strerror(errno));
exit(1);
}
res = fclose(fh);
if (res == EOF) {
fprintf (stderr, "Close failed: %s\n", strerror(errno));

exit(1);

}

res = chmod("secret-file.txt", 0600);

if (res) {
fprintf(stderr, "Chmod failed: %s\n", strerror(errno));
exit(1);

}

(a) You can see that the author of this code was careful to check the return value of each standard-
IO routine or system call that might fail. In case of any failure, the program exits with an
informative error message. However, this choice of error handling behavior is not the best to
protect confidentiality. Describe a scenario in which one of the function calls could fail that
would be a problem for confidentiality.

(b) Even if every system call is successful, this code also has a race condition problem. Describe
a sequence of events that includes both the steps taken by this code and actions taken by an
attacker running at the same time, which could lead to the secret information being disclosed.

2. Another XSS defense. (20 pts)

In the days of the Internet before the dominance of the web, the finger program and protocol
were a way of retrieving plain-text directory and status information (such a person’s email address
and the last time they logged in) across the network. During the transition to the web, it made sense
for a while to have a web page that served as a finger gateway, to provide the same information
from a finger request as a web page. Below is some Java code that might have been used to
implement such a gateway:

public class FingerServlet extends MyServlet {
@0verride
protected void doGet (HttpServletRequest req, HttpServletResponse resp)
throws ServletException, I0Exception {
String username = req.getParameter ("username");
if (username == null)
username = "";

String info = getFingerInfo(username) ;
resp.setStatus (HttpServletResponse.SC_0K) ;
resp.setContentType ("text/html;charset=utf-8");
resp.getWriter() .print("Finger information about the user \"");
resp.getWriter () .print (username) ;
resp.getWriter) .print("\":\n");
resp.getWriter() .print(info);
resp.getWriter() .println(".");

Unfortunately, you may notice that this code has a reflected cross-site scripting vulnerability:
the username variable is supplied via a GET parameter, and is copied directly into the HTML
output. If it contained JavaScript, that code would run with the site’s authority.

We have seen that one way to fix this vulnerability would be to sanitize the characters being
copied into the response, such as replacing each “<” with “&€1t;”. However, since no part of this
output needs to be interpreted as HTML, there is a different single line of this code could be
changed to cause a web browser to interpret it the way we want: which is it?

3. Security definition for a MAC (20 pts)

We mentioned briefly in lecture that the standard definition of security for a MAC requires that
an attacker with chosen-message access to the MAC can’t forge MACs for any messages. Given
that an attacker would normally achieve the ability to forge MACs by recovering the key, one
might ask why we don’t define security for a MAC more directly in terms of recovering the key.
For instance we might say that a MAC is secure if an adversary with chosen-message access to a
MAC can’t recover the key (in polynomial time with a significantly better than random-guessing
success probability).

Explain why this would not be a suitable definition. Recall the MAC from lab 11, where you
found that with polynomially many chosen-message MACs you could compute H(K). Should that
MAC be considered secure?

4. Signing and hash collisions (30 pts)

We discussed in lecture how the usual application of public key encryption is hybrid encryption
in which we first encrypt the data with a symmetric key, then encrypt the symmetric key with a
public encryption key. For similar reasons, most uses of public key signatures begin by hashing
a document with a cryptographic hash function, and then signing the hash with the signing key.
This question concerns an attack that shows why it is important for the hash function used in this
context to be collision resistant.

Suppose our potential victim Alice is using hash-then-sign on a receipt to agree to a purchase
from an online store. Message class A consists of PDF files which are receipts for purchasing
an item Alice wants to buy for a competitive price: for instance, a copy of the latest edition of
Anderson’s Security Engineering textbook for $25. Message class B consists of PDF files which
are receipts showing Alice paying an exorbitant price for an item she doesn’t actually want: for
instance, $50,000 for a goat. Observe that we can easily create very large numbers of distinct
messages of either class, such as by making combinations of small changes to the placement of lines
and the spacing between words.

Suppose the hash function being used is one with a small enough output size, say 100 bits, that
a birthday attack to find free collisions is feasible, but a preimage attack is infeasible. Explain how
an attacker could defraud Alice by finding two messages with the same hash, using not much more
computational effort than a standard birthday attack. Specifically, should the attacker try hashing
messages just of class A, just of class B, or about equal numbers of both? Describe the complete
attack and give a power-of-two estimate of how many hash function computations will be required.

