CSci 427\W
Development of Secure Software Systems
Day 26: Authentication part 3

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Good technical writing (contd)

Know your audience: terminology

£) When technical terminology makes your point clearly,
use it
£) But provide definitions if a concept might be new to

many readers
® Be careful to provide the right information in the definition
» Define at the first instead of a later use
©) On other hand, avoid introducing too many new

terms
® Keep the same term when referring to the same concept

Precise explanations

©) Don't say "we” do something when it's the computer
that does it
® And avoid passive constructions
£) Don't anthropomorphize (computers don't “know")

£) Use singular by default so plural provides a
distinction:
- The students take tests
+ Each student takes a test
+ Each student takes multiple tests

Provide structure

©) Use plenty of sections and sub-sections
0 It's OK to have some redundancy in previewing

structure
©) Limit each paragraph to one concept, and not too

long
® Start with a clear topic sentence

o) Split long, complex sentences into separate ones

Plagiarism and citations

£) Never use someone else’s writing to make it look
like your own
® Overlaps with but different than than cheating
£) Give proper credit for ideas that you get from

somewhere else
® For 4271, mostly don't need to credit course resources
® We have no specific requirements about citation format

Know your audience: Project

£) For projects in this course, assume your audience is
another student who already understands general
course concepts
® Up to the current point in the course
® le, don't need to define “buffer overflow” from scratch
©) But you need to explain specifics of bcimgview

® Make clear what part of the program you're referring to
® Explain all the specific details of a vulnerability

Inclusive language

) Avoid words and grammar that implies relevant
people are male

£) My opinion: avoid using he/him pronouns for
unknown people

£) Some possible alternatives

® “he/she”

® Alternating genders

® Rewrite to plural and use “they” (may be less clear)
® Singular “they” (least traditional, but spreading)

Outline

Web authentication

Per-website authentication

£) Many web sites implement their own login systems

+ If users pick unique passwords, little systemic risk

— Inconvenient, many will reuse passwords

— Lots of functionality each site must implement correctly
— Without enough framework support, many possible pitfalls

Building a session

©) HTTP was originally stateless, but many sites want
stateful login sessions

©) Built by tying requests together with a shared
session ID

©) Must protect confidentiality and integrity

Session ID: what

£) Must not be predictable
= Not a sequential counter
£) Should ensure freshness
® Eg, limited validity window
©) If encoding data in ID, must be unforgeable

® Eg, data with properly used MAC
m Negative example: crypt(username || server secret)

Session ID: where

) Session IDs in URLs are prone to leaking
® Including via user cut-and-paste
£) Usual choice: non-persistent cookie
® Against network attacker, must send only under HTTPS
) Because of CSRF, should also have a non-cookie
unique ID

Session management

£) Create new session ID on each login
©) Invalidate session on logout

©) Invalidate after timeout

® Usability / security tradeoff
® Needed to protect users who fail to log out from public
browsers

Account management

©) Limitations on account creation
® CAPTCHA? Outside email address?
£) See previous discussion on hashed password
storage
£) Automated password recovery

® Usually a weak spot
® But, practically required for large system

Client and server checks

€) For usability, interface should show what's possible

©) But must not rely on client to perform checks

£) Attackers can read/modify anything on the client
side

£) Easy example: item price in hidden field

Direct object references

£) Seems convenient: query parameter names
resource directly
® Eg, database key, filename (path traversal)
©) Easy to forget to validate on each use

©) Alternative: indirect reference like per-session table

® Not fundamentally more secure, but harder to forget
check

Function-level access control

©) Eg. pages accessed by URLs or interface buttons

£) Must check each time that user is authorized
® Attack: find URL when authorized, reuse when logged off

£) Helped by consistent structure in code

Outline

Announcements break

Supplementary office hour

£) Prof. McCamant on Friday, 3:30-4:30pm
£) Same Zoom room as reqular office hours

Project report pre-submission

©) Available now, due date Friday night

) Optional, not graded, feedback only on writing and
presentation style

ROC space revisited

return REJECT;

return ACCEPT;

if (rand() & 1) return ACCEPT; else return REJECT;
if (pitch()) return ACCEPT; else return REJECT;

if (iris()) return ACCEPT; else return REJECT;

if (iris()) return REJECT; else return ACCEPT;

[8

f (iris() &% pitch()) return ACCEPT; else return REJECT;

I O » O ®@ m m @
=

8

f (iris() || pitch()) return ACCEPT; else return REJECT;

Outline

Names and identities

Accounts versus identities

£) “ldentity” is a broad term that can refer to a
personal conception or an automated sytem

£) "Name” is also ambiguous in this way

£) "Account” and “authentication” refer unambiguously
to institutional/computer abstractions

£) Any account system is only an approximation of the
real world

Real human names are messy

£) Most assumptions your code might make will fail for
someone
® ASCII, length limit, uniqueness, unchanging, etc.

©) So, don't design in assumptions about real names
£) Use something more computer-friendly as the core
identifier
® Make “real” names or nicknames a presentation aspect

Zooko's triangle

£) Claims (2001) it is hard/impossible for a naming
scheme to be simultaneously:
® Human-meaningful
®m Secure
® Decentralized

£) Too imprecise to be definitively proven/refuted
® Blockchain-based name systems are highest-profile
claimed counterexamples

©) A useful heuristic for seeing design tensions

Identity documents: mostly unhelpful

£) “Send us a scan of your driver's license”
® Sometimes called for by specific regulations
® Unnecessary storage is a disclosure risk
® Fake IDs are very common

Identity numbers: mostly unhelpful

£) Common US example: social security number

©) Variously used as an identifier or an authenticator
® Dual use is itself a cause for concern

£) Known by many third parties (e.g., banks)
£) No checksum, guessing risks
£) Published soon after a person dies

“Identity theft”

£) The first-order crime is impersonation fraud between
two other parties
® E.g, criminal trying to get money from a bank under false
pretenses
©) The impersonated “victim” is effectively victimized by
follow-on false statements
® Eg, by credit reporting agencies
® These costs are arguably the result of poor regulatory
choices

©) Be careful w/ negative info from 3rd parties

Backup auth suggestion: use time

£) Need for backup often comes for infrequently-used
accounts
£) May be acceptable to slow down recovery if it
reduces attack risk
® Account recovery is a hassle anyway
©) Time can allow legitimate owner to notice malicious
request

Outline

Usability and security

Users are not ‘ideal components’

£) Frustrates engineers: cannot give users instructions
like a computer
® Closest approximation: military

£ Unrealistic expectations are bad for security

Most users are benign and sensible

©) On the other hand, you can't just treat users as
adversaries
® Some level of trust is inevitable
® Your institution is not a prison
©) Also need to take advantage of user common sense
and expertise
® A resource you can't afford to pass up

Don't blame users

) “User error” can be the end of a discussion
£) This is a poor excuse

£) Almost any “user error” could be avoidable with
better systems and procedures

Users as rational

) Economic perspective: users have goals and pursue
them
® They're just not necessarily aligned with security
©) Ignoring a security practice can be rational if the
rewards is greater than the risk

Perspectives from psychology

£) Users become habituated to experiences and
processes
® Learn “skill” of clicking OK in dialog boxes
£) Heuristic factors affect perception of risk
® Level of control, salience of examples
©) Social pressures can override security rules
® “Social engineering” attacks

User attention is a resource

©) Users have limited attention to devote to security
® Exaggeration: treat as fixed

o) If you waste attention on unimportant things, it won't
be available when you need it

) Fable of the boy who cried wolf

Research: ecological validity

£) User behavior with respect to security is hard to
study
©) Experimental settings are not like real situations

©) Subjects often:

® Have little really at stake

® Expect experimenters will protect them

® Do what seems socially acceptable

® Do what they think the experimenters want

Research: deception and ethics

£) Have to be very careful about ethics of experiments
with human subjects
® Enforced by institutional review systems
©) When is it acceptable to deceive subjects?
® Many security problems naturally include deception

