CSci 427\W
Development of Secure Software Systems
Day 25: Authentication part 2

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

User authentication, contd

Authentication factors

©) Something you know (password, PIN)
©) Something you have (e.g., smart card)
©) Something you are (biometrics)

) CAPTCHAS, time and location, ...

©) Multi-factor authentication

Biometric authentication

£) Authenticate by a physical body attribute
+ Hard to lose

— Hard to reset

Inherently statistical

Variation among people

Example biometrics

©) (Handwritten) signatures

©) Fingerprints, hand geometry
£) Face and voice recognition
0 Iris codes

Outline

Error rate trade-offs

Imperfect detection

£) Many security mechanisms involve imperfect
detection/classification of relevant events

©) Biometric authentication

©) Network intrusion detection

£) Anti-virus (malware detection)

©) Anything based on machine learning

Detection results

£) True positive: detector says yes, reality is yes

£) True negative: detector says no, reality is no

£) False positive: detector says yes, reality is no

£) False negative: detector says no, reality is yes

£) Note: terminology may flip based on detecting good
or bad

Why a trade-off?

©) Imperfect methods have a trade-off between
avoiding FPs and avoiding FNs
©) Sometimes a continuous trade-off (curve), e.q. based
on a threshold
® Eg, spam detector “score”
©) May need to choose both a basic mechanism and a
threshold

Two ratios to capture the trade-off

£) True positive rate:

TP TP
TPR_F_TP+FN =1—FNR
£) False positive rate:
FP FP
FPR_W “PPLTN 1—TNR

ROC curve intro

100%

} TR| L

A —

e 0% FPR 100%

Source: https://commons.wikimedia.org/wiki/File:ROC_curves.svg CC-BY-SA 3.0 “Sharpr"

Error rates: ROC curve

Aways
Perfect accept
100% —

<
3
=
—
oy
38
3
23
%
%

True positive rate
g
g
<)

N
o
X

>
B

3
m

% 25% 50% 75% 100%
False positive rate

Extreme biometrics examples

£) exact_iris_code_match: very low false positive
(false authentication)

£) similar voice pitch: very low false negative
(false reject)

Where are these in ROC space?

if (iris()) return REJECT; else return ACCEPT;

return REJECT;

if (iris()) return ACCEPT; else return REJECT;

if (iris() && pitch()) return ACCEPT; else return REJECT;
return ACCEPT;

if (rand() & 1) return ACCEPT; else return REJECT;

if (pitch()) return ACCEPT; else return REJECT;

I ® m m O O W >

if (iris() || pitch()) return ACCEPT; else return REJECT;

Outline

Good technical writing (pt. 1)

Writing in CS versus other writing

£) Key goal is accurately conveying precise technical
information

£) More important: careful use of terminology,
structured organization

£) Less important: writer's personality, persuasion,
appeals to emotion

Still important: concise expression

©) Don't use long words or complicated expressions
when simpler ones would convey the same meaning.
Examples:
® necessitate
® utilize
® due to the fact that

©) Beneficial for both clarity and style

Know your audience: terminology

£) When technical terminology makes your point clearly,
use it
£) But provide definitions if a concept might be new to
many readers
® Be careful to provide the right information in the definition
® Define at the first instead of a later use
£) On other hand, avoid introducing too many new

terms
® Keep the same term when referring to the same concept

Precise explanations

©) Don't say "we” do something when it's the computer
that does it
® And avoid passive constructions
©) Don't anthropomorphize (computers don't “know")

©) Use singular by default so plural provides a
distinction:
- The students take tests
+ Each student takes a test
+ Each student takes multiple tests

Provide structure

£) Use plenty of sections and sub-sections
£ It's OK to have some redundancy in previewing

structure
©) Limit each paragraph to one concept, and not too
long
® Start with a clear topic sentence

£) Split long, complex sentences into separate ones

Plagiarism and citations

£) Never use someone else’s writing to make it look
like your own
® Overlaps with but different than than cheating
) Give proper credit for ideas that you get from

somewhere else
® For 4271, mostly don't need to credit course resources
® We have no specific requirements about citation format

Know your audience: Project

£ For projects in this course, assume your audience is
another student who already understands general
course concepts
® Up to the current point in the course
® |le, don't need to define “buffer overflow” from scratch
©) But you need to explain specifics of bcimgview

® Make clear what part of the program you're referring to
® Explain all the specific details of a vulnerability

Inclusive language

©) Avoid words and grammar that implies relevant
people are male

©) My opinion: avoid using he/him pronouns for
unknown people

£) Some possible alternatives

® “he/she”

® Alternating genders

® Rewrite to plural and use “they” (may be less clear)
® Singular “they” (least traditional, but spreading)

Outline

Web authentication

Per-website authentication

£) Many web sites implement their own login systems

+ If users pick unique passwords, little systemic risk
Inconvenient, many will reuse passwords

— Lots of functionality each site must implement correctly
— Without enough framework support, many possible pitfalls

Building a session

£) HTTP was originally stateless, but many sites want
stateful login sessions

©) Built by tying requests together with a shared
session ID

£) Must protect confidentiality and integrity

Session ID: what

©) Must not be predictable
® Not a sequential counter
©) Should ensure freshness
® Eg, limited validity window
o) If encoding data in ID, must be unforgeable

® Eg, data with properly used MAC
® Negative example: crypt(username || server secret)

Session ID: where

£) Session IDs in URLs are prone to leaking
® Including via user cut-and-paste
£) Usual choice: non-persistent cookie
® Against network attacker, must send only under HTTPS
£) Because of CSRF, should also have a non-cookie
unique ID

Session management

£) Create new session ID on each login
o) Invalidate session on logout

©) Invalidate after timeout

® Usability / security tradeoff
® Needed to protect users who fail to log out from public
browsers

Account management

©) Limitations on account creation
® CAPTCHA? Outside email address?
£) See previous discussion on hashed password
storage
£) Automated password recovery

® Usually a weak spot
® But, practically required for large system

Client and server checks

) For usability, interface should show what's possible

©) But must not rely on client to perform checks

£) Attackers can read/modify anything on the client
side

©) Easy example: item price in hidden field

Direct object references

£) Seems convenient: query parameter names
resource directly
® Eg, database key, filename (path traversal)
£) Easy to forget to validate on each use

£) Alternative: indirect reference like per-session table

® Not fundamentally more secure, but harder to forget
check

Function-level access control

©) E.g. pages accessed by URLs or interface buttons

©) Must check each time that user is authorized
® Attack: find URL when authorized, reuse when logged off

©) Helped by consistent structure in code

Outline

Names and Identities

Accounts versus identities

£) “ldentity” is a broad term that can refer to a
personal conception or an automated sytem

©) "Name” is also ambiguous in this way

©) “Account” and “authentication” refer unambiguously
to institutional/computer abstractions

£) Any account system is only an approximation of the
real world

Real human names are messy

£) Most assumptions your code might make will fail for
someone
® ASCII, length limit, uniqueness, unchanging, etc.

£) So, don't design in assumptions about real names

£) Use something more computer-friendly as the core
identifier
® Make “real” names or nicknames a presentation aspect

Zooko's triangle

£) Claims (2001) it is hard/impossible for a naming
scheme to be simultaneously:
® Human-meaningful
® Secure
® Decentralized
£) Too imprecise to be definitively proven/refuted
® Blockchain-based name systems are highest-profile
claimed counterexamples

©) A useful heuristic for seeing design tensions

Identity documents: mostly unhelpful

©) "Send us a scan of your driver's license”
® Sometimes called for by specific regulations
® Unnecessary storage is a disclosure risk
® Fake IDs are very common

Identity numbers: mostly unhelpful

£) Common US example: social security number

©) Variously used as an identifier or an authenticator
® Dual use is itself a cause for concern

£) Known by many third parties (e.g., banks)
©) No checksum, guessing risks
©) Published soon after a person dies

“Identity theft”

£) The first-order crime is impersonation fraud between
two other parties
® Eg, criminal trying to get money from a bank under false
pretenses
£) The impersonated “victim” is effectively victimized by
follow-on false statements
® Eg, by credit reporting agencies
® These costs are arguably the result of poor regulatory
choices

©) Be careful w/ negative info from 3rd parties

Backup auth suggestion: use time

©) Need for backup often comes for infrequently-used
accounts
£) May be acceptable to slow down recovery if it
reduces attack risk
® Account recovery is a hassle anyway
©) Time can allow legitimate owner to notice malicious
request

