CSci 427W
Development of Secure Software Systems
Day 24: Design Principles and Authentication

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Saltzer & Schroeder’s principles

A classic paper

Jerome H. Saltzer and Michael D. Schroeder, “The
Protection of Information in Computer Systems.” In
Proceedings of the IEEE, Sept. 1975. (853 citations per
IEEE)

Economy of mechanism

£) Security mechanisms should be as simple as
possible

£) Good for all software, but security software needs
special scrutiny

Fail-safe defaults

©) When in doubt, don't give permission

©) Whitelist, don't blacklist

) Obvious reason: if you must fail, fail safe
©) More subtle reason: incentives

Complete mediation

£) Every mode of access must be checked

® Not just regular accesses: startup, maintenance, etc.
£) Checks cannot be bypassed

® Eg, web app must validate on server, not just client

Open design

) Security must not depend on the design being
secret
o If anything is secret, a minimal key
® Design is hard to keep secret anyway

® Key must be easily changeable if revealed
® Design cannot be easily changed

Open design: strong version

£) "The design should not be secret”

o) If the design is fixed, keeping it secret can't help
attackers

£) But an unscrutinized design is less likely to be
secure

Separation of privilege

©) Real world: two-person principle
©) Direct implementation: separation of duty

©) Multiple mechanisms can help if they are both
required
® Password and wheel group in Unix

Least privilege

£) Programs and users should have the most limited
set of powers needed to do their job
£) Presupposes that privileges are suitably divisible
® Contrast: Unix root

Least privilege: privilege separation

£) Programs must also be divisible to avoid excess
privilege

) Classic example: multi-process OpenSSH server

©) NB. Separation of privilege # privilege separation

Least common mechanism

) Minimize the code that all users must depend on for
security

£) Related term: minimize the Trusted Computing Base
(TCB)
£) Eq. prefer library to system call; microkernel OS

Psychological acceptability

£) A system must be easy to use, if users are to apply
it correctly

©) Make the system's model similar to the user’s
mental model to minimize mistakes

Sometimes: work factor

) Cost of circumvention should match attacker and
resource protected

©) Eg, length of password
£) But, many attacks are easy when you know the bug

Sometimes: compromise recording

©) Recording a security failure can be almost as good
as preventing it
£) But, few things in software can't be erased by root

Outline

More secure design principles

Separate the control plane

©) Keep metadata and code separate from untrusted
data

£) Bad: format string vulnerability
£) Bad: old telephone systems

Defense in depth

£) Multiple levels of protection can be better than one
£) Especially if none is perfect
£) But, many weak security mechanisms don't add up

Canonicalize names

©) Use unique representations of objects
o) Eq. in paths, remove ., .., extra slashes, symlinks
©) Eg, use IP address instead of DNS name

Fail-safe / fail-stop

£ If something goes wrong, behave in a way that's safe

£) Often better to stop execution than continue in
corrupted state

£ Eg, better segfault than code injection

Outline

User authentication

Authentication factors

£) Something you know (password, PIN)
£) Something you have (e.g,, smart card)
£) Something you are (biometrics)

) CAPTCHAs, time and location, ...

£) Multi-factor authentication

Passwords: love to hate

£) Many problems for users, sysadmins, researchers
) But familiar and near-zero cost of entry

©) User-chosen passwords proliferate for low-stakes
web site authentication

Password entropy

£) Model password choice as probabilistic process
) If uniform, log; |S|
£) Controls difficulty of guessing attacks

£) Hard to estimate for user-chosen passwords
® Length is an imperfect proxy

Password hashing

©) Idea: don't store password or equivalent information

) Password ‘encryption’ is a long-standing misnomer
8 Eg, Unix crypt (3)

£) Presumably hard-to-invert function h
©) Store only h(p)

Dictionary attacks

£) Online: send quesses to server
£ Offline; attacker can check guesses internally

£) Specialized password lists more effective than literal
dictionaries
® Also generation algorithms (s — $, etc.)

£) ~25% of passwords consistently vulnerable

Better password hashing

©) Generate random salt s, store (s, h(s,p))
® Block pre-computed tables and equality inferences
® Salt must also have enough entropy

©) Deliberately expensive hash function

® AKA password-based key derivation function (PBKDF)
® Requirement for time and/or space

Password usability

£) User compliance can be a major challenge
® Often caused by unrealistic demands

) Distributed random passwords usually unrealistic
£) Password aging: not too frequently
©) Never have a fixed default password in a product

Backup authentication

) Desire: unassisted recovery from forgotten password
©) Fall back to other presumed-authentic channel
® Email, cell phone
©) Harder to forget (but less secret) shared information
® Mother’s maiden name, first pet's name
) Brittle: ask Sarah Palin or Mat Honan

Centralized authentication

©) Enterprise-wide (e.g, UMN ID)

£) Anderson: Microsoft Passport

£) Today: Facebook Connect, Google ID

£) May or may not be single-sign-on (SSO)

Biometric authentication

Hard to lose

Hard to reset

— Inherently statistical

— Variation among people

©) Authenticate by a physical body attribute
+

Example biometrics

£) (Handwritten) signatures

©) Fingerprints, hand geometry
£) Face and voice recognition
£ Iris codes

Outline

Error rate trade-offs

Imperfect detection

£) Many security mechanisms involve imperfect
detection/classification of relevant events

£) Biometric authentication

£) Network intrusion detection

£) Anti-virus (malware detection)

£) Anything based on machine learning

Detection results

©) True positive: detector says yes, reality is yes

£) True negative: detector says no, reality is no

©) False positive: detector says yes, reality is no

©) False negative: detector says no, reality is yes

©) Note: terminology may flip based on detecting good
or bad

Why a trade-off?

©) Imperfect methods have a trade-off between
avoiding FPs and avoiding FNs
£) Sometimes a continuous trade-off (curve), eg. based
on a threshold
® Eg, spam detector “score”
£) May need to choose both a basic mechanism and a
threshold

Two ratios to capture the trade-off

©) True positive rate:

TP TP
TPR:F =PI 1 —FNR
©) False positive rate:
FP FP
FPR_W “FPPrIN 1 —TNR

ROC curve intro

100%

T

} ™R L7

A

- 0% FPR 100%

Source: https://commons.wikimedia.org/wiki/File:ROC_curves.svg CC-BY-SA 3.0 "Sharpr"

Error rates: ROC curve

Always
Perfect accept
1009

75% 20% FP &
9 20% P &

% 25% 50% 75% 100%

Extreme biometrics examples

£) exact_iris_code_match: very low false positive
(false authentication)

€) similar voice pitch: very low false negative
(false reject)

Where are these in ROC space?

if (iris()) return REJECT; else return ACCEPT;

return REJECT;

if (iris()) return ACCEPT; else return REJECT;

if (iris() && pitch()) return ACCEPT; else return REJECT;
return ACCEPT;

if (rand() & 1) return ACCEPT; else return REJECT;

if (pitch()) return ACCEPT; else return REJECT;

I @ m m O O W P>

if (iris() || pitch()) return ACCEPT; else return REJECT;

Outline

Web authentication

Per-website authentication

©) Many web sites implement their own login systems
+ If users pick unique passwords, little systemic risk
— Inconvenient, many will reuse passwords
Lots of functionality each site must implement correctly
— Without enough framework support, many possible pitfalls

Building a session

©) HTTP was originally stateless, but many sites want
stateful login sessions

£) Built by tying requests together with a shared
session ID

£) Must protect confidentiality and integrity

Session ID: what

£) Must not be predictable
® Not a sequential counter
©) Should ensure freshness
® Eg, limited validity window
o) If encoding data in ID, must be unforgeable

® E.g, data with properly used MAC
® Negative example: crypt(username || server secret)

Session ID: where

£) Session IDs in URLs are prone to leaking
® Including via user cut-and-paste
£) Usual choice: non-persistent cookie
® Against network attacker, must send only under HTTPS
) Because of CSRF, should also have a non-cookie
unique ID

Session management

) Create new session ID on each login
©) Invalidate session on logout

©) Invalidate after timeout

® Usability / security tradeoff
® Needed to protect users who fail to log out from public
browsers

Account management

©) Limitations on account creation
® CAPTCHA? Outside email address?
£) See previous discussion on hashed password
storage
£) Automated password recovery

® Usually a weak spot
® But, practically required for large system

Client and server checks Direct object references

£ Seems convenient: query parameter names

£) For usability, interface should show what's possible resource directly

£) But must not rely on client to perform checks ® Eg, database key, filename (path traversal)
©) Attackers can read/modify anything on the client ©) Easy to forget to validate on each use
side ©) Alternative: indirect reference like per-session table
©) Easy example: item price in hidden field ® Not fundamentally more secure, but harder to forget
check

Function-level access control

©) Eg9. pages accessed by URLs or interface buttons

) Must check each time that user is authorized
® Attack: find URL when authorized, reuse when logged off

©) Helped by consistent structure in code

