
CSci 4271W
Development of Secure Software Systems

Day 22: Crypto-enabled protocols and failures
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

SSH

SSL/TLS

More causes of crypto failure

Software engineering for security

Short history of SSH

Started out as freeware by Tatu Ylönen in 1995

Original version commercialized

Fully open-source OpenSSH from OpenBSD

Protocol redesigned and standardized for “SSH 2”

OpenSSH t-shirt

SSH host keys

Every SSH server has a public/private keypair

Ideally, never changes once SSH is installed

Early generation a classic entropy problem
Especially embedded systems, VMs

Authentication methods

Password, encrypted over channel

.shosts: like .rhosts, but using client host key

User-specific keypair
Public half on server, private on client

Plugins for Kerberos, PAM modules, etc.

Old crypto vulnerabilities

1.x had only CRC for integrity
Worst case: when used with RC4

Injection attacks still possible with CBC
CRC compensation attack

For least-insecure 1.x-compatibility, attack detector

Alas, detector had integer overflow worse than
original attack

Newer crypto vulnerabilities

IV chaining: IV based on last message ciphertext
Allows chosen plaintext attacks
Better proposal: separate, random IVs

Some tricky attacks still left
Send byte-by-byte, watch for errors
Of arguable exploitability due to abort

Now migrating to CTR mode



SSH over SSH

SSH to machine 1, from there to machine 2
Common in these days of NATs

Better: have machine 1 forward an encrypted
connection

1. No need to trust 1 for secrecy

2. Timing attacks against password typing

SSH (non-)PKI

When you connect to a host freshly, a mild note

When the host key has changed, a large warning

@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
@ WARNING: REMOTE HOST IDENTIFICATION HAS CHANGED! @
@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
IT IS POSSIBLE THAT SOMEONE IS DOING SOMETHING NASTY!
Someone could be eavesdropping on you right now
(man-in-the-middle attack)!
It is also possible that a host key has just been changed.

Outline

SSH

SSL/TLS

More causes of crypto failure

Software engineering for security

SSL/TLS
Developed at Netscape in early days of the public
web

Usable with other protocols too, e.g. IMAP

SSL 1.0 pre-public, 2.0 lasted only one year, 3.0
much better
Renamed to TLS with RFC process

TLS 1.0 improves SSL 3.0

TLS 1.1 and 1.2 in 2006 and 2008, only gradual
adoption

IV chaining vulnerability

TLS 1.0 uses previous ciphertext for CBC IV

But, easier to attack in TLS:
More opportunities to control plaintext
Can automatically repeat connection

“BEAST” automated attack in 2011: TLS 1.1 wakeup
call

Compression oracle vuln.

Compr(S k A), where S should be secret and A is
attacker-controlled

Attacker observes ciphertext length

If A is similar to S, combination compresses better

Compression exists separately in HTTP and TLS

But wait, there’s more!

Too many vulnerabilities to mention them all in
lecture
Kaloper-Meršinjak et al. have longer list

“Lessons learned” are variable, though

Meta-message: don’t try this at home

HTTPS hierarchical PKI

Browser has order of 100 root certs
Not same set in every browser
Standards for selection not always clear

Many of these in turn have sub-CAs

Also, “wildcard” certs for individual domains



Hierarchical trust?

No. Any CA can sign a cert for any domain

A couple of CA compromises recently

Most major governments, and many companies
you’ve never heard of, could probably make a
google.com cert

Still working on: make browser more picky, compare
notes

CA vs. leaf checking bug

Certs have a bit that says if they’re a CA

All but last entry in chain should have it set

Browser authors repeatedly fail to check this bit

Allows any cert to sign any other cert

MD5 certificate collisions

MD5 collisions allow forging CA certs

Create innocuous cert and CA cert with same hash
Requires some guessing what CA will do, like sequential
serial numbers
Also 200 PS3s

Oh, should we stop using that hash function?

CA validation standards

CA’s job to check if the buyer really is foo.com

Race to the bottom problem:
CA has minimal liability for bad certs
Many people want cheap certs
Cost of validation cuts out of profit

“Extended validation” (green bar) certs attempt to fix

HTTPS and usability

Many HTTPS security challenges tied with user
decisions

Is this really my bank?

Seems to be a quite tricky problem
Security warnings often ignored, etc.
We’ll return to this as a major example later

Outline

SSH

SSL/TLS

More causes of crypto failure

Software engineering for security

Random numbers and entropy

Cryptographic RNGs use cipher-like techniques to
provide indistinguishability
But rely on truly random seeding to stop brute force

Extreme case: no entropy ! always same “randomness”

Modern best practice: seed pool with 256 bits of
entropy

Suitable for security levels up to 2
256

Netscape RNG failure

Early versions of Netscape SSL (1994-1995) seeded
with:

Time of day
Process ID
Parent process ID

Best case entropy only 64 bits
(Not out of step with using 40-bit encryption)

But worse because many bits guessable



Debian/OpenSSL RNG failure (1)

OpenSSL has pretty good scheme using
/dev/urandom
Also mixed in some uninitialized variable values

“Extra variation can’t hurt”

From modern perspective, this was the original sin
Remember undefined behavior discussion?

But had no immediate ill effects

Debian/OpenSSL RNG failure (2)

Debian maintainer commented out some lines to fix
a Valgrind warning

“Potential use of uninitialized value”

Accidentally disabled most entropy (all but 16 bits)

Brief mailing list discussion didn’t lead to
understanding

Broken library used for �2 years before discovery

Detected RSA/DSA collisions
2012: around 1% of the SSL keys on the public net
are breakable

Some sites share complete keypairs
RSA keys with one prime in common (detected by
large-scale GCD)

One likely culprit: insufficient entropy in key
generation

Embedded devices, Linux /dev/urandom vs.
/dev/random

DSA signature algorithm also very vulnerable

Newer factoring problem (CCS’17)

An Infineon RSA library used primes of the form
p = k �M+ (65537a mod M)

Smaller problems: fingerprintable, less entropy

Major problem: can factor with a variant of
Coppersmith’s algoritm

E.g., 3 CPU months for a 1024-bit key

Side-channel attacks
Timing analysis:

Number of 1 bits in modular exponentiation
Unpadding, MAC checking, error handling
Probe cache state of AES table entries

Power analysis
Especially useful against smartcards

Fault injection

Data non-erasure
Hard disks, “cold boot” on RAM

WEP “privacy”

First WiFi encryption standard: Wired Equivalent
Privacy (WEP)

F&S: designed by a committee that contained no
cryptographers
Problem 1: note “privacy”: what about integrity?

Nope: stream cipher + CRC = easy bit flipping

WEP shared key

Single key known by all parties on network

Easy to compromise

Hard to change

Also often disabled by default

Example: a previous employer

WEP key size and IV size

Original sizes: 40-bit shared key (export restrictions)
plus 24-bit IV = 64-bit RC4 key

Both too small

128-bit upgrade kept 24-bit IV
Vague about how to choose IVs
Least bad: sequential, collision takes hours
Worse: random or everyone starts at zero



WEP RC4 related key attacks

Only true crypto weakness

RC4 “key schedule” vulnerable when:
RC4 keys very similar (e.g., same key, similar IV)
First stream bytes used

Not such a problem for other RC4 users like SSL
Key from a hash, skip first output bytes

Newer problem with WPA (CCS’17)

Session key set up in a 4-message handshake

Key reinstallation attack: replay #3
Causes most implementations to reset nonce and replay
counter
In turn allowing many other attacks
One especially bad case: reset key to 0

Protocol state machine behavior poorly described in
spec

Outside the scope of previous security proofs

Trustworthiness of primitives

Classic worry: DES S-boxes

Obviously in trouble if cipher chosen by your
adversary

In a public spec, most worrying are unexplained
elements

Best practice: choose constants from well-known
math, like digits of �

Dual EC DRBG (1)

Pseudorandom generator in NIST standard, based on
elliptic curve

Looks like provable (slow enough!) but strangely no
proof

Specification includes long unexplained constants

Academic researchers find:
Some EC parts look good
But outputs are statistically distinguishable

Dual EC DRBG (2)

Found 2007: special choice of constants allows
prediction attacks

Big red flag for paranoid academics

Significant adoption in products sold to US govt.
FIPS-140 standards

Semi-plausible rationale from RSA (EMC)

NSA scenario basically confirmed by Snowden leaks
NIST and RSA immediately recommend withdrawal

Outline

SSH

SSL/TLS

More causes of crypto failure

Software engineering for security

Defensive programming

Analogy to defensive driving: drive so that there
won’t be a crash even if other drivers are negligent

Don’t just avoid bugs, reduce risks

Aim for security even if other code and
programmers are imperfect

Modularity

Divide software into pieces with well-defined
functionality
Isolate security-critical code

Minimize TCB, facilitate privilege separation
Improve auditability



Minimize interfaces

Hallmark of good modularity: clean interface

Particularly difficult:
Safely implementing an interface for malicious users
Safely using an interface with a malicious implementation

Appropriate paranoia

Many security problems come down to missing
checks

But, it isn’t possible to check everything continuously

How do you know when to check what?

Invariant

A fact about the state of a program that should
always be maintained

Assumed in one place to guarantee in another

Compare: proof by induction

Pre- and postconditions

Invariants before and after execution of a function

Precondition: should be true before call

Postcondition: should be true after return

Dividing responsibility

Program must ensure nothing unsafe happens

Pre- and postconditions help divide that
responsibility without gaps

When to check

At least once before any unsafe operation

If the check is fast

If you know what to do when the check fails

If you don’t trust
your caller to obey a precondition
your callee to satisfy a postcondition
yourself to maintain an invariant

Sometimes you can’t check

Check that p points to a null-terminated string

Check that fp is a valid function pointer

Check that x was not chosen by an attacker

Error handling

Every error must be handled
I.e, program must take an appropriate response action

Errors can indicate bugs, precondition violations, or
situations in the environment



Error codes

Commonly, return value indicates error if any

Bad: may overlap with regular result

Bad: goes away if ignored

Exceptions

Separate from data, triggers jump to handler

Good: avoid need for manual copying, not dropped

May support: automatic cleanup (finally)

Bad: non-local control flow can be surprising


