CSci 427\W
Development of Secure Software Systems
Day 20: Network protocols

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Brief introduction to networking, contd

Layered model: TCP/IP

IP(v4) addressing

£ Interfaces (hosts or routers) identified by 32-bit

addresses
® Written as four decimal bytes, e.g. 192168.10.2

) First k bits identify network, 32 — k host within
network
® Can't (anymore) tell k from the bits

) We'll run out any year now

Application protocol (e.g. HTTP
Application il P te.g ) A
TCP or UDP
Transport T
IP IP
Network I — N N
802.11 (WiFi) Ethernet
Link > L L
IP and ICMP

o) Internet Protocol (IP) forwards individual packets

©) Packets have source and destination addresses,
other options

©) Automatic fragmentation (usually avoided)

) ICMP (I Control Message P) adds errors, ping
packets, etc.

UDP

©) User Datagram Protocol: thin wrapper around IP

£) Adds source and destination port numbers (each
16-bit)

) Still connectionless, unreliable

£) OK for some small messages

TCP

£) Transmission Control Protocol: provides reliable
bidirectional stream abstraction

©) Packets have sequence numbers, acknowledged in
order
©) Missed packets resent later

Flow and congestion control

£) Flow control: match speed to slowest link
® “Window" limits number of packets sent but not ACKed
£) Congestion control: avoid traffic jams

® Lost packets signal congestion
® Additive increase, multiplicative decrease of rate




Routing

©) Where do | send this packet next?
® Table from address ranges to next hops

) Core Internet routers need big tables

©) Maintained by complex, insecure, cooperative
protocols
® Internet-level algorithm: BGP (Border Gateway Protocol)

Below IP: ARP

£) Address Resolution Protocol maps IP addresses to
lower-level address
® Eg, 48-bit Ethernet MAC address

£) Based on local-network broadcast packets

£) Complex Ethernets also need their own routing (but
called switches)

DNS

©) Domain Name System: map more memorable and
stable string names to IP addresses
©) Hierarchically administered namespace
® Like Unix paths, but backwards

©) .edu server delegates to .umn.edu server, etc.

DNS caching and reverse DNS

£) To be practical, DNS requires caching
® Of positive and negative results

) But, cache lifetime limited for freshness

£) Also, reverse IP to name mapping

® Based on special top-level domain, IP address written
backwards

Classic application: remote login

o) Killer app of early Internet: access supercomputers
at another university
) Telnet: works cross-0S
® Send character stream, run regular login program
©) rlogin: BSD Unix
® Can authenticate based on trusting computer connection

comes from
® (Also rsh, rep)

Outline

One slide of logistics

Problem set 1 due Friday

©) Problem set 1 due 1:59pm Friday on Canvas
©) Piazza has a comment expanding on what makes a
“high-level” policy
® Also a good place for remaining questions or clarifications

Outline

Some classic network attacks




Packet sniffing

£) Watch other people’s traffic as it goes by on network

©) Easiest on:
® Old-style broadcast (thin, “*hub”) Ethernet
® Wireless

©) Or if you own the router

Forging packet sources

£) Source IP address not involved in routing, often not
checked

£) Change it to something else!

£) Might already be enough to fool a naive UDP
protocol

TCP spoofing

£) Forging source address only lets you talk, not listen

©) Old attack: wait until connection established, then
DoS one participant and send packets in their place

) Frustrated by making TCP initial sequence numbers
unpredictable

® But see Oakland'12, WOOT'12 for fancier attacks, keyword
“off-path”

ARP spoofing

©) Impersonate other hosts on local network level

©) Typical ARP implementations stateless, don't mind
changes

£) Now you get victim's traffic, can read, modify, resend

rlogin and reverse DNS

©) rlogin uses reverse DNS to see if originating host is
on whitelist

©) How can you attack this mechanism with an honest
source IP address?

rlogin and reverse DNS

£ rlogin uses reverse DNS to see if originating host is
on whitelist

£) How can you attack this mechanism with an honest
source IP address?

£) Remember, ownership of reverse-DNS is by IP
address

Outline

Cryptographic protocols, pt. 1

A couple more security goals

£) Non-repudiation: principal cannot later deny having
made a commitment
® le, consider proving fact to a third party
£) Forward secrecy: recovering later information does
not reveal past information

® Motivates using Diffie-Hellman to generate fresh keys for
each session




Abstract protocols

) Outline of what information is communicated in
messages

® Omit most details of encoding, naming, sizes, choice of
ciphers, etc.

©) Describes honest operation
® But must be secure against adversarial participants

£) Seemingly simple, but many subtle problems

Protocol notation

A—B: NB){TO>B)NB}KB
©) A — B: message sent from Alice intended for Bob
©) B (after ;). Bob's name
o {- - -Jx: encryption with key K

Example: simple authentication

A — B:A{A, Nk,
£ Eg, Alice is key fob, Bob is garage door
£) Alice proves she possesses the pre-shared key K
® Without revealing it directly

) Using encryption for authenticity and binding, not
secrecy

Nonce

A — B: A {A, N},
) N is a nonce: a value chosen to make a message
unique
©) Best practice: pseudorandom

£ In constrained systems, might be a counter or
device-unigue serial number

Replay attacks

©) A nonce is needed to prevent a verbatim replay of a
previous message
£) Garage door difficulty: remembering previous nonces
® Particularly: lunchtime/roommate/valet scenario
©) Or, door chooses the nonce: challenge-response
authentication

Middleperson attacks

£) Older name: man-in-the-middle attack, MITM

£) Adversary impersonates Alice to Bob and
vice-versa, relays messages

£) Powerful position for both eavesdropping and
modification

©) No easy fix if Alice and Bob aren't already related

Chess grandmaster problem

) Variant or dual of middleperson

©) Adversary forwards messages to simulate
capabilities with his own identity

©) How to win at correspondence chess
£) Anderson’s MiG-in-the-middle

Anti-pattern: “oracle”

©) Any way a legitimate protocol service can give a
capability to an adversary

£) Can exist whenever a party decrypts, signs, etc.

©) "Padding oracle” was an instance of this at the
implementation level




Outline

Key distribution and PKI

Public key authenticity

£) Public keys don't need to be secret, but they must
be right

£) Wrong key — can't stop middleperson
£) So we still have a pretty hard distribution problem

Symmetric key servers

©) Users share keys with server, server distributes
session keys

©) Symmetric key-exchange protocols, or channels

©) Standard: Kerberos

©) Drawback: central point of trust

Certificates

£) A name and a public key, signed by someone else
®m Ca = Signg(A, Ka)

£) Basic unit of transitive trust

£) Commonly use a complex standard “X.509"

Certificate authorities

£) "CA” for short: entities who sign certificates
©) Simplest model: one central CA
£) Works for a single organization, not the whole world

Web of trust

£) Pioneered in PGP for email encryption
£) Everyone is potentially a CA: trust people you know

£) Works best with security-motivated users
® Ever attended a key signing party?

CA hierarchies

©) Organize CAs in a tree
©) Distributed, but centralized (like DNS)
) Check by follow a path to the root

) Best practice: sub CAs are limited in what they
certify

PKI for authorization

£) Enterprise PKI can link up with permissions

£) One approach: PKI maps key to name, ACL maps
name to permissions

£) Often better: link key with permissions directly, name

is @ comment
® More like capabilities




The revocation problem

£) How can we make certs “go away” when needed?
©) Impossible without being online somehow

1. Short expiration times

2. Certificate revocation lists

3. Certificate status checking




