CSci 427\W
Development of Secure Software Systems
Day 15: Web Application Security, part 3

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

SQL injection

Relational model and SQL

©) Relational databases have tables with rows and
single-typed columns

©) Used in web sites (and elsewhere) to provide
scalable persistent storage

©) Allow complex queries in a declarative language SQL

Example SQL queries

€) SELECT name, grade FROM Students WHERE
grade < 60 ORDER BY name;

€) UPDATE Votes SET count = count + 1 WHERE
candidate = ’John’;

Template: injection attacks

©) Your program interacts with an interpreted language

©) Untrusted data can be passed to the interpreter

) Attack data can break parsing assumptions and
execute arbitrary commands

SQL + injection

£) Why is this named most critical web app. risk?
£) Easy mistake to make systematically
£) Can be easy to exploit

) Database often has high-impact contents
® Eg, logins or credit cards on commerce site

Strings do not respect syntax

£) Key problem: assembling commands as strings
f) "WHERE name = ’$name’ ;"

©) Looks like $name is a string

©) Try $name = "me’ OR grade > 80; —-"

Using tautologies

©) Tautology: formula that’s always true
) Often convenient for attacker to see a whole table
£) Classic: OR 1=1

Non-string interfaces

£) Best fix: avoid constructing queries as strings
£) SQL mechanism: prepared statement
® Original motivation was performance
£) Web languages/frameworks often provide other
syntax

Retain functionality: escape

£) Sanitizing data is transforming it to prevent an attack

£) Escaped data is encoded to match language rules
for literal
mEg,\"and \ninC
£) But many pitfalls for the unwary:

o Differences in escape syntax between servers
® Must use right escape for context: not everything's a
string

Lazy sanitization: allow-listing

©) Allow only things you know to be safe/intended

©) Error or delete anything else

©) Short allow-list is easy and relatively easy to secure
©) E.g, digits only for non-negative integer

©) But, tends to break benign functionality

Poor idea: deny-listing

£) Space of possible attacks is endless, don't try to
think of them all

£) Want to guess how many more comment formats
SQL has?

©) Particularly silly: deny 1=1

Attacking without the program

) Often web attacks don't get to see the program
® Not even binary, it's on the server
£) Surmountable obstacle:

® Guess natural names for columns
® Harvest information from error messages

Blind SQL injection

£) Attacking with almost no feedback

£) Common: only “error” or “no error”

£) One bit channel you can make yourself: if (x) delay
10 seconds

£ Trick to remember: go one character at a time

Injection beyond SQL

©) Shell commands, format strings, XSS
©) XPath/XQuery: queries on XML data
©) LDAP: queries used for authentication

Outline

Injection attack demo

Injection attack template

©) Injection attacks often have a three-part structure:
1. Break out of enclosing structures
2. Malicious commands
3. Re-enter structures, or otherwise clean up

Injection attack demo

©) To illustrate, let's see how the CSS XSS attack from
the lab works in this way

©) (Demo in text editor)

Outline

Confidentiality and privacy

Site perspective

£) Protect confidentiality of authenticators
® Passwords, session cookies, CSRF tokens
£) Duty to protect some customer info
® Personally identifying info (“identity theft”)
® Credit-card info (Payment Card Industry Data Security
Standards)

® Health care (HIPAA), education (FERPA)
® Whatever customers reasonably expect

You need to use SSL

©) Finally coming around to view that more sites need
to support HTTPS
® Special thanks to WiFi, NSA
©) If you take credit cards (of course)

o If you ask users to log in

® Must be protecting something, right?
® Also important for users of Tor et al.

Server-side encryption

£) Also consider encrypting data “at rest”
£) (Or, avoid storing it at all)
£) Provides defense in depth

® Reduce damage after another attack

£) May be hard to truly separate keys

® OWASP example: public key for website — backend
credit card info

Adjusting client behavior

©) HTTPS and password fields are basic hints

©) Consider disabling autocomplete
® Usability tradeoff, save users from themselves
® Finally standardized in HTMLS

£) Consider disabling caching

® Performance tradeoff
® Better not to have this on user's disk
® Or proxy? You need SSL

User vs. site perspective

£) User privacy goals can be opposed to site goals
£ Such as in tracking for advertisements

) Browser makers can find themselves in the middle
® Of course, differ in institutional pressures

Third party content / web bugs

£) Much tracking involves sites other than the one in

the URL bar
® For fun, check where your cookies are coming from

) Various levels of cooperation

) Web bugs are typically 1x1 images used only for
tracking

FlLlke <0

Cookies arms race

£) Privacy-sensitive users like to block and/or delete
cookies
£) Sites have various reasons to retain identification

) Various workarounds:

® Similar features in Flash and HTML5

® Various channels related to the cache

® Evercookie: store in . places, regenerate if subset are
deleted

Browser fingerprinting

£) Combine various server or JS-visible attributes
passively
® User agent string (10 bits)
® Window/screen size (483 bits)
® Available fonts (13.9 bits)
® Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from exhaustive)

History stealing

£) History of what sites you've visited is not supposed

to be JS-visible
£) But, many side-channel attacks have been possible
® Query link color
® CSS style with external image for visited links
® Slow-rendering timing channel
® Harvesting bitmaps
m User perception (e.g. fake CAPTCHA)

Browser and extension choices

£) More aggressive privacy behavior lives in extensions
® Disabling most JavaScript (NoScript)
® HTTPS Everywhere (centralized list)
® Tor Browser Bundle

) Default behavior is much more controversial

® Concern not to kill advertising support as an economic
model

Outline

Even more web risks

Misconfiguration problems

©) Default accounts
©) Unneeded features

©) Framework behaviors
® Don't automatically create variables from query fields

Openness tradeoffs

€ Error reporting

® Few benign users want to see a stack backtrace
£) Directory listings

® Hallmark of the old days
£) Readable source code of scripts

® Doesn't have your DB password in it, does it?

Using vulnerable components

©) Large web apps can use a lot of third-party code

£) Convenient for attackers too
® OWASP: two popular vulnerable components downloaded
22m times

©) Hiding doesn't work if it's popular
©) Stay up to date on security announcements

Clickjacking

£) Fool users about what they're clicking on
® Circumvent security confirmations
® Fabricate ad interest
©) Example techniques:
® Frame embedding
® Transparency
® Spoof cursor
® Temporal “bait and switch”

Crawling and scraping

o) A lot of web content is free-of-charge, but

proprietary
® Yours in a certain context, if you view ads, etc.

) Sites don't want it downloaded automatically (web
crawling)

©) Or parsed and user for another purpose (screen
scraping)

©) High-rate or honest access detectable

Outline

Crypto basics

-ography, -ology, -analysis

©) Cryptography (narrow sense): designing encryption
©) Cryptanalysis: breaking encryption

©) Cryptology: both of the above

©) Code (narrow sense). word-for-concept substitution
) Cipher: the “"codes” we actually care about

Caesar cipher

£) Advance three letters in alphabet:
A—-D,B—E,...

£) Decrypt by going back three letters

€ Internet-era variant: rot-13

£) Easy to break if you know the principle

Keys and Kerckhoffs's principle

©) The only secret part of the cipher is a key

) Security does not depend on anything else being
secret

£) Modern (esp. civilian, academic) crypto embraces
openness quite strongly

Symmetric vs. public key

£) Symmetric key (up first): one key used by all
participants
£) Public key: one key kept secret, another published

® Techniques invented in 1970s
® Makes key distribution easier
® Depends on fancier math

Goal: secure channel

©) Leaks no content information
® Not protected: size, timing
£) Messages delivered intact and in order
® Or not at all
©) Even if an adversary can read, insert, and delete
traffic

One-time pad

©) Secret key is truly random data as long as message

£) Encrypt by XOR (more generally addition mod
alphabet size)

©) Provides perfect, “information-theoretic” secrecy

©) No way to get around key size requirement

Computational security

£) More realistic: assume adversary has a limit on
computing power
©) Secure if breaking encryption is computationally
infeasible
® E.g, exponential-time brute-force search

©) Ties cryptography to complexity theory

Key sizes and security levels

o) Difficulty measured in powers of two, ignore small
constant factors

) Power of attack measured by number of steps, aim
for better than brute force

) 232 definitely too easy, probably 2¢* too

£) Modern symmetric key size: at least 2'%8

Crypto primitives

£) Base complicated systems on a minimal number of
simple operations

©) Designed to be fast, secure in wide variety of uses

£) Study those primitives very intensely

Attacks on encryption

£) Known ciphertext
® Weakest attack

£) Known plaintext (and corresponding ciphertext)
£) Chosen plaintext

) Chosen ciphertext (and plaintext)
® Strongest version: adaptive

Certificational attacks

£) Good primitive claims no attack more effective than
brute force
©) Any break is news, even if it's not yet practical
® Canary in the coal mine
o Eg, 2'%% attack against AES-128

£) Also watched: attacks against simplified variants

Fundamental ignorance

£) We don't really know that any computational
cryptosystem is secure

£) Security proof would be tantamount to proving
P # NP

£) Crypto is fundamentally more uncertain than other
parts of security

Relative proofs

) Prove security under an unproved assumption
©) In symmetric crypto, prove a construction is secure
if the primitive is
® Often the proof looks like: if the construction is insecure,
so is the primitive
©) Can also prove immunity against a particular kind of
attack

Random oracle paradigm

£) Assume ideal model of primitives: functions selected
uniformly from a large space
® Anderson: elves in boxes
£) Not theoretically sound; assumption cannot be
satisfied

£) But seems to be safe in practice

Pseudorandomness and distinguishers

£) Claim; primitive cannot be distinguished from a truly
random counterpart
® In polynomial time with non-negligible probability
£) We can build a distinguisher algorithm to exploit any
weakness
) Slightly too strong for most practical primitives, but a
good goal

Open standards

£) How can we get good primitives?

£) Open-world best practice: run competition, invite
experts to propose then attack

©) Run by neutral experts, eg. US NIST

£) Recent good examples: AES, SHA-3

A certain three-letter agency

©) National Security Agency (NSA): has primary
responsibility for “signals intelligence”
©) Dual-mission tension:

® Break the encryption of everyone in the world
® Help US encryption not be broken by foreign powers

