
CSci 4271W
Development of Secure Software Systems
Day 15: Web Application Security, part 3

Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

SQL injection

Injection attack demo

Confidentiality and privacy

Even more web risks

Crypto basics

Relational model and SQL

Relational databases have tables with rows and
single-typed columns

Used in web sites (and elsewhere) to provide
scalable persistent storage

Allow complex queries in a declarative language SQL

Example SQL queries

SELECT name, grade FROM Students WHERE

grade < 60 ORDER BY name;

UPDATE Votes SET count = count + 1 WHERE

candidate = 'John';

Template: injection attacks

Your program interacts with an interpreted language

Untrusted data can be passed to the interpreter

Attack data can break parsing assumptions and
execute arbitrary commands

SQL + injection

Why is this named most critical web app. risk?

Easy mistake to make systematically

Can be easy to exploit

Database often has high-impact contents
E.g., logins or credit cards on commerce site

Strings do not respect syntax

Key problem: assembling commands as strings

"WHERE name = '$name';"

Looks like $name is a string

Try $name = "me' OR grade > 80; --"

Using tautologies

Tautology: formula that’s always true

Often convenient for attacker to see a whole table

Classic: OR 1=1

Non-string interfaces

Best fix: avoid constructing queries as strings

SQL mechanism: prepared statement
Original motivation was performance

Web languages/frameworks often provide other
syntax

Retain functionality: escape

Sanitizing data is transforming it to prevent an attack

Escaped data is encoded to match language rules
for literal

E.g., \" and \n in C

But many pitfalls for the unwary:
Differences in escape syntax between servers
Must use right escape for context: not everything’s a
string

Lazy sanitization: allow-listing

Allow only things you know to be safe/intended

Error or delete anything else

Short allow-list is easy and relatively easy to secure

E.g., digits only for non-negative integer

But, tends to break benign functionality

Poor idea: deny-listing

Space of possible attacks is endless, don’t try to
think of them all

Want to guess how many more comment formats
SQL has?

Particularly silly: deny 1=1

Attacking without the program

Often web attacks don’t get to see the program
Not even binary, it’s on the server

Surmountable obstacle:
Guess natural names for columns
Harvest information from error messages

Blind SQL injection

Attacking with almost no feedback

Common: only “error” or “no error”

One bit channel you can make yourself: if (x) delay
10 seconds

Trick to remember: go one character at a time

Injection beyond SQL

Shell commands, format strings, XSS

XPath/XQuery: queries on XML data

LDAP: queries used for authentication

Outline

SQL injection

Injection attack demo

Confidentiality and privacy

Even more web risks

Crypto basics

Injection attack template

Injection attacks often have a three-part structure:
1. Break out of enclosing structures
2. Malicious commands
3. Re-enter structures, or otherwise clean up

Injection attack demo

To illustrate, let’s see how the CSS XSS attack from
the lab works in this way

(Demo in text editor)

Outline

SQL injection

Injection attack demo

Confidentiality and privacy

Even more web risks

Crypto basics

Site perspective

Protect confidentiality of authenticators
Passwords, session cookies, CSRF tokens

Duty to protect some customer info
Personally identifying info (“identity theft”)
Credit-card info (Payment Card Industry Data Security
Standards)
Health care (HIPAA), education (FERPA)
Whatever customers reasonably expect

You need to use SSL

Finally coming around to view that more sites need
to support HTTPS

Special thanks to WiFi, NSA

If you take credit cards (of course)

If you ask users to log in
Must be protecting something, right?
Also important for users of Tor et al.

Server-side encryption

Also consider encrypting data “at rest”

(Or, avoid storing it at all)

Provides defense in depth
Reduce damage after another attack

May be hard to truly separate keys
OWASP example: public key for website ! backend
credit card info

Adjusting client behavior

HTTPS and password fields are basic hints

Consider disabling autocomplete
Usability tradeoff, save users from themselves
Finally standardized in HTML5

Consider disabling caching
Performance tradeoff
Better not to have this on user’s disk
Or proxy? You need SSL

User vs. site perspective

User privacy goals can be opposed to site goals

Such as in tracking for advertisements

Browser makers can find themselves in the middle
Of course, differ in institutional pressures

Third party content / web bugs

Much tracking involves sites other than the one in
the URL bar

For fun, check where your cookies are coming from

Various levels of cooperation

Web bugs are typically 1x1 images used only for
tracking

Cookies arms race

Privacy-sensitive users like to block and/or delete
cookies

Sites have various reasons to retain identification

Various workarounds:
Similar features in Flash and HTML5
Various channels related to the cache
Evercookie: store in n places, regenerate if subset are
deleted

Browser fingerprinting

Combine various server or JS-visible attributes
passively

User agent string (10 bits)
Window/screen size (4.83 bits)
Available fonts (13.9 bits)
Plugin verions (15.4 bits)

(Data from panopticlick.eff.org, far from exhaustive)

History stealing

History of what sites you’ve visited is not supposed
to be JS-visible
But, many side-channel attacks have been possible

Query link color
CSS style with external image for visited links
Slow-rendering timing channel
Harvesting bitmaps
User perception (e.g. fake CAPTCHA)

Browser and extension choices

More aggressive privacy behavior lives in extensions
Disabling most JavaScript (NoScript)
HTTPS Everywhere (centralized list)
Tor Browser Bundle

Default behavior is much more controversial
Concern not to kill advertising support as an economic
model

Outline

SQL injection

Injection attack demo

Confidentiality and privacy

Even more web risks

Crypto basics

Misconfiguration problems

Default accounts

Unneeded features

Framework behaviors
Don’t automatically create variables from query fields

Openness tradeoffs

Error reporting
Few benign users want to see a stack backtrace

Directory listings
Hallmark of the old days

Readable source code of scripts
Doesn’t have your DB password in it, does it?

Using vulnerable components

Large web apps can use a lot of third-party code

Convenient for attackers too
OWASP: two popular vulnerable components downloaded
22m times

Hiding doesn’t work if it’s popular

Stay up to date on security announcements

Clickjacking

Fool users about what they’re clicking on
Circumvent security confirmations
Fabricate ad interest

Example techniques:
Frame embedding
Transparency
Spoof cursor
Temporal “bait and switch”

Crawling and scraping

A lot of web content is free-of-charge, but
proprietary

Yours in a certain context, if you view ads, etc.

Sites don’t want it downloaded automatically (web
crawling)

Or parsed and user for another purpose (screen
scraping)

High-rate or honest access detectable

Outline

SQL injection

Injection attack demo

Confidentiality and privacy

Even more web risks

Crypto basics

-ography, -ology, -analysis

Cryptography (narrow sense): designing encryption

Cryptanalysis: breaking encryption

Cryptology: both of the above

Code (narrow sense): word-for-concept substitution

Cipher: the “codes” we actually care about

Caesar cipher

Advance three letters in alphabet:
A! D;B! E; : : :

Decrypt by going back three letters

Internet-era variant: rot-13

Easy to break if you know the principle

Keys and Kerckhoffs’s principle

The only secret part of the cipher is a key

Security does not depend on anything else being
secret

Modern (esp. civilian, academic) crypto embraces
openness quite strongly

Symmetric vs. public key

Symmetric key (up first): one key used by all
participants
Public key: one key kept secret, another published

Techniques invented in 1970s
Makes key distribution easier
Depends on fancier math

Goal: secure channel

Leaks no content information
Not protected: size, timing

Messages delivered intact and in order
Or not at all

Even if an adversary can read, insert, and delete
traffic

One-time pad

Secret key is truly random data as long as message

Encrypt by XOR (more generally addition mod
alphabet size)

Provides perfect, “information-theoretic” secrecy

No way to get around key size requirement

Computational security

More realistic: assume adversary has a limit on
computing power
Secure if breaking encryption is computationally
infeasible

E.g., exponential-time brute-force search

Ties cryptography to complexity theory

Key sizes and security levels

Difficulty measured in powers of two, ignore small
constant factors

Power of attack measured by number of steps, aim
for better than brute force

232 definitely too easy, probably 264 too

Modern symmetric key size: at least 2128

Crypto primitives

Base complicated systems on a minimal number of
simple operations

Designed to be fast, secure in wide variety of uses

Study those primitives very intensely

Attacks on encryption

Known ciphertext
Weakest attack

Known plaintext (and corresponding ciphertext)

Chosen plaintext

Chosen ciphertext (and plaintext)
Strongest version: adaptive

Certificational attacks

Good primitive claims no attack more effective than
brute force
Any break is news, even if it’s not yet practical

Canary in the coal mine

E.g., 2126:1 attack against AES-128

Also watched: attacks against simplified variants

Fundamental ignorance

We don’t really know that any computational
cryptosystem is secure

Security proof would be tantamount to proving
P 6= NP

Crypto is fundamentally more uncertain than other
parts of security

Relative proofs

Prove security under an unproved assumption

In symmetric crypto, prove a construction is secure
if the primitive is

Often the proof looks like: if the construction is insecure,
so is the primitive

Can also prove immunity against a particular kind of
attack

Random oracle paradigm

Assume ideal model of primitives: functions selected
uniformly from a large space

Anderson: elves in boxes

Not theoretically sound; assumption cannot be
satisfied

But seems to be safe in practice

Pseudorandomness and distinguishers

Claim: primitive cannot be distinguished from a truly
random counterpart

In polynomial time with non-negligible probability

We can build a distinguisher algorithm to exploit any
weakness

Slightly too strong for most practical primitives, but a
good goal

Open standards

How can we get good primitives?

Open-world best practice: run competition, invite
experts to propose then attack

Run by neutral experts, e.g. US NIST

Recent good examples: AES, SHA-3

A certain three-letter agency

National Security Agency (NSA): has primary
responsibility for “signals intelligence”
Dual-mission tension:

Break the encryption of everyone in the world
Help US encryption not be broken by foreign powers

