CSci 427\W
Development of Secure Software Systems
Day 13: Isolation, Web Security part 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Isolation mechanisms

Ideal: least privilege

©) Programs and users should have the most limited
set of powers needed to do their job
©) Presupposes that privileges are suitably divisible
® Contrast: Unix root

“Trusted”, TCB

£ In security, “trusted” is a bad word

£) X is trusted: X can break your security
£ "Untrusted” = okay if it's evil

©) Trusted Computing Base (TCB): minimize

Restricted languages

£) Main application: code provided by untrusted parties
©) Packet filters in the kernel

£) JavaScript in web browsers
® Also Java, Flash ActionScript, etc.

SFl

) Software-based Fault Isolation

©) Instruction-level rewriting

® Analogous to but predates control-flow integrity, used to
prevent control-flow hijacking

©) Limit memory stores and sometimes loads
£) Can't jump out except to designated points
£ Eg., Google Native Client

Separate processes

©) OS (and hardware) isolate one process from another
©) Pay overhead for creation and communication

©) System call interface allows many possibilities for
mischief

System-call interposition

£) Trusted process examines syscalls made by
untrusted

©) Implement via ptrace (like strace, gdb) or via kernel
change

£) Easy policy: deny

Interposition challenges

£) Argument values can change in memory (TOCTTOU)
©) OS objects can change (TOCTTOU)

©) How to get canonical object identifiers?

©) Interposer must accurately model kernel behavior

) Details: Garfinkel (NDSS'03)

Separate users

£) Reuse OS facilities for access control

£) Unit of trust: program or application

£) Older example: gmail

©) Newer example: Android

©) Limitation: lots of things available to any user

chroot

£) Unix system call to change root directory
©) Restrict/virtualize file system access

©) Only available to root

©) Does not isolate other namespaces

0OS-enabled containers

£) One kernel, but virtualizes all namespaces
©) FreeBSD jails, Linux LXC, Solaris zones, etc.
©) Quite robust, but the full, fixed, kernel is in the TCB

(System) virtual machines

©) Presents hardware-like interface to an untrusted
kernel

£) Strong isolation, full administrative complexity

0 I/0 interface looks like a network, etc.

Virtual machine designs

£) (Type 1) hypervisor: ‘superkernel’ underneath VMs

£) Hosted: regular OS underneath VMs

£) Paravirtualizaion: modify kernels in VMs for ease of
virtualization

Virtual machine technologies

©) Hardware based: fastest, now common
©) Partial translation: e.g,, original VMware

©) Full emulation: e.g. QEMU proper
® Slowest, but can be a different CPU architecture

Modern example: Chrom(ium)

©) Separates “browser kernel” from less-trusted
“rendering engine”
® Pragmatic, keeps high-risk components together

£) Experimented with various Windows and Linux
sandboxing techniques

) Blocked 70% of historic vulnerabilities, not all new
ones

) http://seclab.stanford.edu/websec/chromium/

Outline

The web from a security perspective

Once upon a time: the static web

€) HTTP: stateless file download protocol
® TCPR usually using port 80
£) HTML: markup language for text with formatting and
links
©) All pages public, so no need for authentication or
encryption

Web applications

©) The modern web depends heavily on active software
) Static pages have ads, paywalls, or “Edit” buttons
£) Many web sites are primarily forms or storefronts

©) Web hosted versions of desktop apps like word
processing

Server programs

£) Could be anything that outputs HTML
£ In practice, heavy use of databases and frameworks
£) Wide variety of commercial, open-source, and
custom-written
£) Flexible scripting languages for ease of development
® PHP Ruby, Perl, etc.

Client-side programming

£) Java: nice language, mostly moved to other uses

£ ActiveX: Windows-only binaries, no sandboxing
® Glad to see it on the way out
©) Flash and Silverlight: most important use is DRM-ed
video

©) Core language: JavaScript

JavaScript and the DOM

£) JavaScript (JS) is a dynamically-typed prototype-OO
language
® No real similarity with Java
) Document Object Model (DOM): lets JS interact with
pages and the browser

£) Extensive security checks for untrusted-code model

Same-origin policy

©) Origin is a tuple (scheme, host, port)
® Eg, (http, www.umn.edu, 80)
£) Basic JS rule: interaction is allowed only with the
same origin
) Different sites are (mostly) isolated applications

GET, POST, and cookies

£) GET request loads a URL, may have parameters
delimited with ?, &, =
® Standard: should not have side-effects
£) POST request originally for forms
® Can be larger, more hidden, have side-effects
£) Cookie: small token chosen by server, sent back on
subsequent requests to same domain

User and attack models

£) "Web attacker” owns their own site
(www.attacker.com)
® And users sometimes visit it
® Realistic reasons: ads, SEO
©) "Network attacker” can view and sniff unencrypted
data
® Unprotected coffee shop WiFi

Outline

Cross-site scripting

XSS: HTML/JS injection

©) Note: CSS is “Cascading Style Sheets”

©) Another use of injection template

) Attacker supplies HTML containing JavaScript (or
occasionally CSS)

£) OWASP's most prevalent weakness

® A category unto itself
® Easy to commit in any dynamic page construction

Why XSS is bad (and named that)

£) attacker.com can send you evil JS directly
£) But XSS allows access to bank. com data

£) Violates same-origin policy

©) Not all attacks actually involve multiple sites

Reflected XSS

©) Injected data used immediately in producing a page
£) Commonly supplied as query/form parameters
) Classic attack is link from evil site to victim site

Persistent XSS

£ Injected data used to produce page later
£ For instance, might be stored in database

£) Can be used by one site user to attack another user
® Eg, to gain administrator privilege

DOM-based XSS

©) Injection occurs in client-side page construction
©) Flaw at least partially in code running on client

£) Many attacks involve mashups and inter-site
communication

No string-free solution

£) For server-side XSS, no way to avoid string

concatenation
£) Web page will be sent as text in the end
® Research topic: ways to change this?

£) XSS especially hard kind of injection

Danger: complex language embedding

£ JS and CSS are complex languages in their own
right
£) Can appear in various places with HTML
® But totally different parsing rules
©) Example: ". . ." used for HTML attributes and JS
strings
® What happens when attribute contains JS?

Danger: forgiving parsers

£ History: handwritten HTML, browser competition
£) Many syntax mistakes given “likely” interpretations
£) Handling of incorrect syntax was not standardized

Sanitization: plain text only

©) Easiest case: no tags intended, insert at document
text level

©) Escape HTML special characters with entities like
&1t; for <

) OWASP recommendation: & < > " > /

Sanitization: context matters

£) An OWASP document lists 5 places in a web page
you might insert text
® For the rest, "don’t do that”

£) Each one needs a very different kind of escaping

Sanitization: tag allow-listing

©) In some applications, want to allow benign markup
like

©) But, even benign tags can have JS attributes

©) Handling well essentially requires an HTML parser
® But with an adversarial-oriented design

Don't deny-list

£) Browser capabilities continue to evolve

£) Attempts to list all bad constructs inevitably
incomplete

£) Even worse for XSS than other injection attacks

Filter failure: one-pass delete

©) Simple idea: remove all occurrences of <script>
©) What happens to <scr<script>ipt>?

Filter failure: UTF-7

£ You may have heard of UTF-8
® Encode Unicode as 8-bit bytes

) UTF-7 is similar but uses only ASCII

£) Encoding can be specified in a <meta> tag, or some
browsers will guess

€) +ADw-script+AD4-

Filter failure: event handlers

©) Put this on something the user will be tempted to
click on
©) There are more than 100 handlers like this
recognized by various browsers

Use good libraries

£) Coding your own defenses will never work
©) Take advantage of known good implementations

£) Best case: already built into your framework
® Disappointingly rare

Content Security Policy

©) Added HTTP header, W3C recommendation

©) Lets site opt-in to stricter treatment of embedded
content, such as:
® No inline JS, only loaded from separate URLs
® Disable JS eval et al.

£) Has an interesting violation-reporting mode

