CSci 427\W
Development of Secure Software Systems
Day 10: OS-level Injection Threats

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Injection vulnerabilities: format strings (contd)

Injection vulnerabilities

£) Common dangerous pattern: interpreter code with
attacker control

©) Interpreted language example: eval

£) OS example: shell script injection

©) Web examples: JavaScript (XSS), SQL injection
©) C library example: printf format string

Format string attack: overwrite

©) %n specifier: store number of chars written so far to
pointer arg

® Benign but uncommon use: account for length in other
formatting

£) Advance format arg pointer to other
attacker-controlled data

£) Control number of chars written with padding
£) Net result is a “write-what-where” primitive

Practical format string challenges

£) Attacker usually must control format as well as one
or more arguments
£) Writing a big value requires impractical output size

® Workaround 1. overwrite two bytes with %hn
® Workaround 2: use overlapping unaligned write to control
byte by byte

Format string defenses

£) Compilers will warn for printf that looks like it
should just be puts
£) Several platforms have decided to just remove %n
® Android Bionic, Visual Studio
o) Linux glibc by default will block %n if the format
string is writeable
£) Major remaining use is information disclosure

Demo: first steps of BCLPR format attack

©) In demo: quick audit, supplying format

Outline

Shell code injection and related threats

Two kinds of privilege escalation

©) Local exploit: give higher privilege to a reqular user
® Eg, caused by bug in setuid program or OS kernel
©) Remote exploit: give access to an external user
who doesn't even have an account
® Eg, caused by bug in network-facing server or client

Shell code injection

©) The command shell is convenient to use, especially
in scripts
® In C: system, popen
£)But it is bad to expose the shell's power to an
attacker
©) Key pitfall: assembling shell commands as strings

£) Note: different from binary “shellcode”

Shell code injection example

©) Benign: system("cp $argl $arg2"), argl =
"filel.txt"

©) Attack: argl = "a b; echo Gotcha"

©) Command: "cp a b; echo Gotcha file2.txt"

£) Not a complete solution: prohibit *;"

The structure problem

©) What went wrong here?

£) Basic mistake: assuming string concatenation will
respect language grammar

® Eg, that attacker supplied “filename” will be interpreted
that way

Best fix: avoiding the shell

©) Avoid letting untrusted data get near a shell

) For instance, call external programs with lower-level
interfaces
mEg, fork and exec instead of system

©) May constitute a security/flexibility trade-off

Less reliable: text processing

£) Allow-list: known-good characters are allowed,
others prohibited
® Eg, username consists only of letters
® Safest, but potential functionality cost
©) Deny-list: known-bad characters are prohibited,
others allowed
® Easy to miss some bad scenarios
£) "Sanitization”: transform bad characters into good
® Same problem as deny-list, plus extra complexity

Terminology note

) Historically the most common terms for allow-list
and deny-list have been “whitelist” and “blacklist”
respectively

©) These terms have been criticized for a problematic
“white=good"”, “black=bad" association

©) The push to avoid the terms got significant additional
attention last summer, but is still somewhat political
and in flux

Different shells and multiple interpretation

£) Complex Unix systems include shells at multiple
levels, making these issues more complex

® Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

£) Other shell-like programs also have caveats with
levels of interpretation
® Tcl before version 9 interpreted leading zeros as octal

Related local dangers

©) File names might contain any character except / or
the null character

£) The PATH environment variable is user-controllable,
so cp may not be the program you expect

©) Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem

£ In Unix, splitting a command line into words is the
shell's job
® String — argv array
®grep a b cVvs. grep ’a b’ ¢
£) Choice of separator characters (default space, tab,
newline) is configurable
£) Exploit system("/bin/uname")
©) In modern shells, improved by not taking from
environment

Outline

Print server threat modeling

Data flows and trust boundaries

£ Interactive in drawing program

Outline

Good technical writing (pt. 1)

Writing in CS versus other writing

£) Key goal is accurately conveying precise technical
information

£) More important: careful use of terminology,
structured organization

©) Less important: writer's personality, persuasion,
appeals to emotion

Still important: concise expression

©) Don't use long words or complicated expressions

when simpler ones would convey the same meaning.

Examples:
® necessitate
® utilize
® due to the fact that

) Beneficial for both clarity and style

Know your audience: terminology

£) When technical terminology makes your point clearly,
use it
£) But provide definitions if a concept might be new to
many readers
® Be careful to provide the right information in the definition
® Define at the first instead of a later use
£) On other hand, avoid introducing too many new
terms
® Keep the same term when referring to the same concept

Precise explanations

©) Don't say “we” do something when it's the computer
that does it
® And avoid passive constructions
©) Don't anthropomorphize (computers don't “*know")

) Use singular by default so plural provides a
distinction:
- The students take tests
+ Each student takes a test
+ Each student takes multiple tests

Provide structure

£) Use plenty of sections and sub-sections

o) It's OK to have some redundancy in previewing
structure
©) Limit each paragraph to one concept, and not too
long
® Start with a clear topic sentence

£) Split long, complex sentences into separate ones

Know your audience: Project 1

£) For projects in this course, assume your audience is
another student who already understands general
course concepts
® Up to the current point in the course
® le, don't need to define “buffer overflow” from scratch
©) But you need to explain specifics of a vulnerable
program
® Make clear what part of the program you're referring to
® Explain all the specific details of a vulnerability

Inclusive language

£) Avoid words and grammar that implies relevant
people are male

£) My opinion; avoid using he/him pronouns for
unknown people

£) Some possible alternatives

® “he/she”

® Alternating genders

® Rewrite to plural and use “they” (may be less clear)
® Singular “they” (least traditional, but spreading)

