
CSci 4271W
Development of Secure Software Systems

Day 10: OS-level Injection Threats
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Injection vulnerabilities: format strings (cont’d)

Shell code injection and related threats

Print server threat modeling

Good technical writing (pt. 1)

Injection vulnerabilities

Common dangerous pattern: interpreter code with
attacker control

Interpreted language example: eval

OS example: shell script injection

Web examples: JavaScript (XSS), SQL injection

C library example: printf format string

Format string attack: overwrite

%n specifier: store number of chars written so far to
pointer arg

Benign but uncommon use: account for length in other
formatting

Advance format arg pointer to other
attacker-controlled data

Control number of chars written with padding

Net result is a “write-what-where” primitive

Practical format string challenges

Attacker usually must control format as well as one
or more arguments
Writing a big value requires impractical output size

Workaround 1: overwrite two bytes with %hn

Workaround 2: use overlapping unaligned write to control
byte by byte

Format string defenses

Compilers will warn for printf that looks like it
should just be puts

Several platforms have decided to just remove %n

Android Bionic, Visual Studio

Linux glibc by default will block %n if the format
string is writeable

Major remaining use is information disclosure

Demo: first steps of BCLPR format attack

In demo: quick audit, supplying format

Outline

Injection vulnerabilities: format strings (cont’d)

Shell code injection and related threats

Print server threat modeling

Good technical writing (pt. 1)



Two kinds of privilege escalation

Local exploit: give higher privilege to a regular user
E.g., caused by bug in setuid program or OS kernel

Remote exploit: give access to an external user
who doesn’t even have an account

E.g., caused by bug in network-facing server or client

Shell code injection

The command shell is convenient to use, especially
in scripts

In C: system, popen

But it is bad to expose the shell’s power to an
attacker

Key pitfall: assembling shell commands as strings

Note: different from binary “shellcode”

Shell code injection example

Benign: system("cp $arg1 $arg2"), arg1 =
"file1.txt"

Attack: arg1 = "a b; echo Gotcha"

Command: "cp a b; echo Gotcha file2.txt"

Not a complete solution: prohibit ‘;’

The structure problem

What went wrong here?

Basic mistake: assuming string concatenation will
respect language grammar

E.g., that attacker supplied “filename” will be interpreted
that way

Best fix: avoiding the shell

Avoid letting untrusted data get near a shell

For instance, call external programs with lower-level
interfaces

E.g., fork and exec instead of system

May constitute a security/flexibility trade-off

Less reliable: text processing

Allow-list: known-good characters are allowed,
others prohibited

E.g., username consists only of letters
Safest, but potential functionality cost

Deny-list: known-bad characters are prohibited,
others allowed

Easy to miss some bad scenarios

“Sanitization”: transform bad characters into good
Same problem as deny-list, plus extra complexity

Terminology note

Historically the most common terms for allow-list
and deny-list have been “whitelist” and “blacklist”
respectively

These terms have been criticized for a problematic
“white=good”, “black=bad” association

The push to avoid the terms got significant additional
attention last summer, but is still somewhat political
and in flux

Different shells and multiple interpretation

Complex Unix systems include shells at multiple
levels, making these issues more complex

Frequent example: scp runs a shell on the server, so
filenames with whitespace need double escaping

Other shell-like programs also have caveats with
levels of interpretation

Tcl before version 9 interpreted leading zeros as octal



Related local dangers

File names might contain any character except / or
the null character

The PATH environment variable is user-controllable,
so cp may not be the program you expect

Environment variables controlling the dynamic loader
cause other code to be loaded

IFS and why it was a problem
In Unix, splitting a command line into words is the
shell’s job

String ! argv array
grep a b c vs. grep 'a b' c

Choice of separator characters (default space, tab,
newline) is configurable

Exploit system("/bin/uname")

In modern shells, improved by not taking from
environment

Outline

Injection vulnerabilities: format strings (cont’d)

Shell code injection and related threats

Print server threat modeling

Good technical writing (pt. 1)

Data flows and trust boundaries

Interactive in drawing program

Outline

Injection vulnerabilities: format strings (cont’d)

Shell code injection and related threats

Print server threat modeling

Good technical writing (pt. 1)

Writing in CS versus other writing

Key goal is accurately conveying precise technical
information

More important: careful use of terminology,
structured organization

Less important: writer’s personality, persuasion,
appeals to emotion

Still important: concise expression

Don’t use long words or complicated expressions
when simpler ones would convey the same meaning.
Examples:

necessitate
utilize
due to the fact that

Beneficial for both clarity and style

Know your audience: terminology

When technical terminology makes your point clearly,
use it
But provide definitions if a concept might be new to
many readers

Be careful to provide the right information in the definition
Define at the first instead of a later use

On other hand, avoid introducing too many new
terms

Keep the same term when referring to the same concept



Precise explanations

Don’t say “we” do something when it’s the computer
that does it

And avoid passive constructions

Don’t anthropomorphize (computers don’t “know”)

Use singular by default so plural provides a
distinction:

- The students take tests
+ Each student takes a test
+ Each student takes multiple tests

Provide structure

Use plenty of sections and sub-sections

It’s OK to have some redundancy in previewing
structure
Limit each paragraph to one concept, and not too
long

Start with a clear topic sentence

Split long, complex sentences into separate ones

Know your audience: Project 1

For projects in this course, assume your audience is
another student who already understands general
course concepts

Up to the current point in the course
I.e., don’t need to define “buffer overflow” from scratch

But you need to explain specifics of a vulnerable
program

Make clear what part of the program you’re referring to
Explain all the specific details of a vulnerability

Inclusive language

Avoid words and grammar that implies relevant
people are male

My opinion: avoid using he/him pronouns for
unknown people
Some possible alternatives

“he/she”
Alternating genders
Rewrite to plural and use “they” (may be less clear)
Singular “they” (least traditional, but spreading)


