
CSci 4271W
Development of Secure Software Systems

Day 6: Memory safety defenses and counter-attacks
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Exploiting other vulnerabilities

Buffer overflows in GDB

W�X (DEP)

Return-oriented programming (ROP)

ROP shellcoding exercise

Non-control data overwrite

Overwrite other security-sensitive data

No change to program control flow

Set user ID to 0, set permissions to all, etc.

Heap meta-data

Boundary tags similar to doubly-linked list

Overwritten on heap overflow

Arbitrary write triggered on free

Simple version stopped by sanity checks

Heap meta-data Use after free

Write to new object overwrites old, or vice-versa

Key issue is what heap object is reused for

Influence by controlling other heap operations

Integer overflows

Easiest to use: overflow in small (8-, 16-bit) value, or
only overflowed value used
2GB write in 100 byte buffer

Find some other way to make it stop

Arbitrary single overwrite
Use math to figure out overflowing value

Null pointer dereference

Add offset to make a predictable pointer
On Windows, interesting address start low

Allocate data on the zero page
Most common in user-space to kernel attacks
Read more dangerous than a write

Format string attack

Attacker-controlled format: little interpreter

Step one: add extra integer specifiers, dump stack
Already useful for information disclosure

Format string attack layout

Format string attack layout Format string attack: overwrite

%n specifier: store number of chars written so far to
pointer arg

Advance format arg pointer to other
attacker-controlled data

Control number of chars written with padding

On x86, can use unaligned stores to create pointer

Outline

Exploiting other vulnerabilities

Buffer overflows in GDB

W�X (DEP)

Return-oriented programming (ROP)

ROP shellcoding exercise

Demo

Previous examples in terminal, continued

Outline

Exploiting other vulnerabilities

Buffer overflows in GDB

W�X (DEP)

Return-oriented programming (ROP)

ROP shellcoding exercise

Basic idea

Traditional shellcode must go in a memory area that
is

writable, so the shellcode can be inserted
executable, so the shellcode can be executed

But benign code usually does not need this
combination

W xor X, really :(W ^ X)

Non-writable code, X! :W

E.g., read-only .text section

Has been standard for a while, especially on Unix

Lets OS efficiently share code with multiple program
instances

Non-executable data, W ! :X

Prohibit execution of static data, stack, heap

Not a problem for most programs
Incompatible with some GCC features no one uses
Non-executable stack opt-in on Linux, but now
near-universal

Implementing W � X

Page protection implemented by CPU
Some architectures (e.g. SPARC) long supported W � X

x86 historically did not
One bit controls both read and execute
Partial stop-gap “code segment limit”

Eventual obvious solution: add new bit
NX (AMD), XD (Intel), XN (ARM)

One important exception

Remaining important use of self-modifying code:
just-in-time (JIT) compilers

E.g., all modern JavaScript engines

Allow code to re-enable execution per-block
mprotect, VirtualProtect
Now a favorite target of attackers

Counterattack: code reuse

Attacker can’t execute new code

So, take advantage of instructions already in binary

There are usually a lot of them

And no need to obey original structure

Classic return-to-libc (1997)

Overwrite stack with copies of:
Pointer to libc’s system function
Pointer to "/bin/sh" string (also in libc)

The system function is especially convenient

Distinctive feature: return to entry point

Chained return-to-libc

Shellcode often wants a sequence of actions, e.g.
Restore privileges
Allow execution of memory area
Overwrite system file, etc.

Can put multiple fake frames on the stack
Basic idea present in 1997, further refinements

Outline

Exploiting other vulnerabilities

Buffer overflows in GDB

W�X (DEP)

Return-oriented programming (ROP)

ROP shellcoding exercise

Pop culture analogy: ransom note trope Basic new idea

Treat the stack like a new instruction set

“Opcodes” are pointers to existing code

Generalizes return-to-libc with more programmability

Academic introduction and source of name: Hovav
Shacham, ACM CCS 2007

ret2pop (Nergal, Müller)

Take advantage of shellcode pointer already present
on stack
Rewrite intervening stack to treat the shellcode
pointer like a return address

A long sequence of chained returns, one pop

ret2pop (Nergal, Müller)

Gadgets

Basic code unit in ROP

Any existing instruction sequence that ends in a
return

Found by (possibly automated) search

Another partial example

Overlapping x86 instructions

push %esi

mov $0x56,%dh sbb $0xff,%al inc %eax or %al,%dh

movzbl 0x1c(%esi),%edx incl 0x8(%eax) ...

0f b6 56 1c ff 40 08 c6

Variable length instructions can start at any byte

Usually only one intended stream

Where gadgets come from

Possibilities:
Entirely intended instructions
Entirely unaligned bytes
Fall through from unaligned to intended

Standard x86 return is only one byte, 0xc3

Building instructions

String together gadgets into manageable units of
functionality
Examples:

Loads and stores
Arithmetic
Unconditional jumps

Must work around limitations of available gadgets

Hardest case: conditional branch

Existing jCC instructions not useful

But carry flag CF is

Three steps:
1. Do operation that sets CF
2. Transfer CF to general-purpose register
3. Add variable amount to %esp

Further advances in ROP

Can also use other indirect jumps, overlapping not
required

Automation in gadget finding and compilers

In practice: minimal ROP code to allow transfer to
other shellcode

Outline

Exploiting other vulnerabilities

Buffer overflows in GDB

W�X (DEP)

Return-oriented programming (ROP)

ROP shellcoding exercise

Setup

Key motivation for ROP is to disable W � X

Can be done with a single syscall, similar to execve

shellcode

Your exercise for today: put together such shellcode
from a limited gadget set

Puzzle/planning aspect: order to avoid overwriting

