CSci 427\W
Development of Secure Software Systems
Day 5: Threat modeling, memory safety attacks

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Threat modeling

Why threat modeling?

©) Think about and describe the security design of your
system

©) Enumerate possible threats
£) Guide effort spent on combating threats
£) Communicate to customers and other developers

Why a structured approach?

£) Goal is to avoid missing a threat

£) Enumerate vectors for threats

©) Enumerate kinds of threats per vector

£) Convince readers of the model's completeness

Data-flow modeling

) Break down software into smaller modules
® Modules drawn with rounded rectangles
® More detail is better, within reason
©) Show data flows among modules and external
parties
® Rectangles for external parties
® Most data flows will be bi-drectional

Data flow example

Web Web Business
(browser server logic Data base]

Trust boundaries

©) A trust boundary groups components with the same
privilege, which therefore trust each other
® Drawn as labeled dotted box
® Attacks usually don't originate within a trust group

£) The boundary also corresponds to an attack surface

Trust boundaries example

Web Web Business
(browser }{ server logic Database]

Data center | |Amazon

Attacks come with data flows

©) Principle: attacks propagate along data flows

©) Therefore, enumerate flows to enumerate attacks
® A more specific prompt, but does not eliminate the need
for imagination
® Other half is types of attacks, see next slide

STRIDE threat taxonomy

£) Spoofing (vs authentication)

£) Tampering (vs integrity)

£) Repudiation (vs. non-repdiation)

£ Information disclosure (vs. confidentiality)
©) Denial of service (vs. availability)

) Elevation of privilege (vs. authortization)

What to do about threats

©) Mitigate: add a defense, which may not be complete

©) Eliminate: such as by removing functionality

©) Transfer functionality: let someone else handle it

©) Transfer risk: convince another to bear the cost

©) Accept risk: decide that the risk (probability - loss) is
sufficiently low

Spoofing threat examples

£) Using someone else’s account
£) Making a program use the wrong file
£) False address on network traffic

Tampering threat examples

£) Modifying an important file
©) Rearranging directory structure
©) Changing contents of network packets

Repudiation threat examples

£) Performing an important action without logging

£) Destroying existing logs

£) Add fake events to make real events hard to find or
not credible

Info. disclosure threat examples

) Eavesdropping on network traffic
©) Reading sensitive files
©) Learning sensitive information from meta-data

DoS threat examples

€) Flood network link with bogus traffic

£) Make a server use up available memory

£) Make many well-formed but non-productive
interactions

Elevation of privilege threat examples

©) Cause data to be interpreted as code
) Change process to run as root/administrator

£) Convince privileged process to run attacker's code

Outline

Shellcode techniques

Basic definition

©) Shellcode: attacker supplied instructions
implementing malicious functionality

£) Name comes from example of starting a shell
) Often requires attention to machine-language
encoding

Classic execve /bin/sh

€) execve(fname, argv, envp) System call
©) Specialized syscall calling conventions

£) Omit unneeded arguments

£) Doable in under 25 bytes for Linux/x86

Avoiding zero bytes

£) Common requirement for shellcode in C string
£) Analogy: broken O key on keyboard
£) May occur in other parts of encoding as well

More restrictions

£) No newlines

£) Only printable characters

£) Only alphanumeric characters
£) “English Shellcode” (CCS'09)

Transformations

©) Fold case, escapes, Latinl to Unicode, etc.
o) Invariant: unchanged by transformation

) Pre-image: becomes shellcode only after
transformation

Multi-stage approach

£ Initially executable portion unpacks rest from
another format

©) Improves efficiency in restricted environments

©) But self-modifying code has pitfalls

NOP sleds

£) Goal: make the shellcode an easier target to hit

©) Long sequence of no-op instructions, real shellcode
at the end
® x86: 0x90 0x90 0x90 0x90 0x90 ...shellcode

Where to put shellcode?

©) In overflowed buffer, if big enough

£) Anywhere else you can get it
® Nice to have: predictable location

£) Convenient choice of Unix local exploits:

Where to put shellcode?

Environment variables

Code reuse

o) If can't get your own shellcode, use existing code

) Classic example: system implementation in C library
® “Return to libc” attack

£) More variations on this later

Oxbfffffff

USER=smccfglPATH=/bin: /usr/bin[i0] Environment/
[RISPLAY=: gioJLANG=en_US [olji686M0 | [AUXV strings
sue o/ tmp[i0] fpalite 16 bytes] | | argv strings

6:\ 4096 / 11 1792 15:[1] 0: @ |auxv
g Yo environment
HEOr Ao argv

future|growth
Outline

Buffer overflows in GDB

Demo

£) Previous examples in terminal

Outline

Exploiting other vulnerabilities

Non-control data overwrite

£) Overwrite other security-sensitive data
£) No change to program control flow
£) Set user ID to O, set permissions to all, etc.

Heap meta-data

£) Boundary tags similar to doubly-linked list
£) Overwritten on heap overflow

©) Arbitrary write triggered on free

©) Simple version stopped by sanity checks

Heap meta-data

future|growth
the

"break” | [\

I]| Unallocated
|
|

‘ area

——————
[Free Tl 11 I [Medium objects

2 11 w/ boundary tags
LI Free | y tag

]| Small objects
]| bucketed by size

Use after free

©) Write to new object overwrites old, or vice-versa
©) Key issue is what heap object is reused for
o) Influence by controlling other heap operations

Integer overflows

£) Easiest to use: overflow in small (8-, 16-bit) value, or
only overflowed value used
£) 2GB write in 100 byte buffer
® Find some other way to make it stop
£) Arbitrary single overwrite
® Use math to figure out overflowing value

Null pointer dereference

©) Add offset to make a predictable pointer
® On Windows, interesting address start low
©) Allocate data on the zero page

® Most common in user-space to kernel attacks
® Read more dangerous than a write

Format string attack

£) Attacker-controlled format: little interpreter

£) Step one: add extra integer specifiers, dump stack
® Already useful for information disclosure

Format string attack layout

caller locals,
other frames

spec.
arg #2

spec.

arg #1 argument
—

pointer

format
string.

ptr \ /
LT %X %X %X %X %X
address|
caller frame

printf frame

Format string attack layout

caller locals,
other frames

spec.
arg #2
spec.
arg #1 argument

format pointer
string.

ptr

return o / oo o
%X %X %X %X %X
address
caller frame

printf frame

Format string attack: overwrite

©) %n specifier: store number of chars written so far to
pointer arg

©) Advance format arg pointer to other
attacker-controlled data

£) Control number of chars written with padding
£) On x86, can use unaligned stores to create pointer

