
CSci 4271W
Development of Secure Software Systems

Day 5: Threat modeling, memory safety attacks
Stephen McCamant

University of Minnesota, Computer Science & Engineering

Outline

Threat modeling

Shellcode techniques

Buffer overflows in GDB

Exploiting other vulnerabilities

Why threat modeling?

Think about and describe the security design of your
system

Enumerate possible threats

Guide effort spent on combating threats

Communicate to customers and other developers

Why a structured approach?

Goal is to avoid missing a threat

Enumerate vectors for threats

Enumerate kinds of threats per vector

Convince readers of the model’s completeness

Data-flow modeling

Break down software into smaller modules
Modules drawn with rounded rectangles
More detail is better, within reason

Show data flows among modules and external
parties

Rectangles for external parties
Most data flows will be bi-drectional

Data flow example

Trust boundaries

A trust boundary groups components with the same
privilege, which therefore trust each other

Drawn as labeled dotted box
Attacks usually don’t originate within a trust group

The boundary also corresponds to an attack surface

Trust boundaries example



Attacks come with data flows

Principle: attacks propagate along data flows

Therefore, enumerate flows to enumerate attacks
A more specific prompt, but does not eliminate the need
for imagination
Other half is types of attacks, see next slide

STRIDE threat taxonomy

Spoofing (vs authentication)

Tampering (vs integrity)

Repudiation (vs. non-repdiation)

Information disclosure (vs. confidentiality)

Denial of service (vs. availability)

Elevation of privilege (vs. authortization)

What to do about threats

Mitigate: add a defense, which may not be complete

Eliminate: such as by removing functionality

Transfer functionality: let someone else handle it

Transfer risk: convince another to bear the cost

Accept risk: decide that the risk (probability � loss) is
sufficiently low

Spoofing threat examples

Using someone else’s account

Making a program use the wrong file

False address on network traffic

Tampering threat examples

Modifying an important file

Rearranging directory structure

Changing contents of network packets

Repudiation threat examples

Performing an important action without logging

Destroying existing logs

Add fake events to make real events hard to find or
not credible

Info. disclosure threat examples

Eavesdropping on network traffic

Reading sensitive files

Learning sensitive information from meta-data

DoS threat examples

Flood network link with bogus traffic

Make a server use up available memory

Make many well-formed but non-productive
interactions



Elevation of privilege threat examples

Cause data to be interpreted as code

Change process to run as root/administrator

Convince privileged process to run attacker’s code

Outline

Threat modeling

Shellcode techniques

Buffer overflows in GDB

Exploiting other vulnerabilities

Basic definition

Shellcode: attacker supplied instructions
implementing malicious functionality

Name comes from example of starting a shell

Often requires attention to machine-language
encoding

Classic execve /bin/sh

execve(fname, argv, envp) system call

Specialized syscall calling conventions

Omit unneeded arguments

Doable in under 25 bytes for Linux/x86

Avoiding zero bytes

Common requirement for shellcode in C string

Analogy: broken 0 key on keyboard

May occur in other parts of encoding as well

More restrictions

No newlines

Only printable characters

Only alphanumeric characters

“English Shellcode” (CCS’09)

Transformations

Fold case, escapes, Latin1 to Unicode, etc.

Invariant: unchanged by transformation

Pre-image: becomes shellcode only after
transformation

Multi-stage approach

Initially executable portion unpacks rest from
another format

Improves efficiency in restricted environments

But self-modifying code has pitfalls



NOP sleds

Goal: make the shellcode an easier target to hit

Long sequence of no-op instructions, real shellcode
at the end

x86: 0x90 0x90 0x90 0x90 0x90 . . . shellcode

Where to put shellcode?

In overflowed buffer, if big enough

Anywhere else you can get it
Nice to have: predictable location

Convenient choice of Unix local exploits:

Where to put shellcode?

Environment variables

Code reuse

If can’t get your own shellcode, use existing code

Classic example: system implementation in C library
“Return to libc” attack

More variations on this later

Outline

Threat modeling

Shellcode techniques

Buffer overflows in GDB

Exploiting other vulnerabilities

Demo

Previous examples in terminal

Outline

Threat modeling

Shellcode techniques

Buffer overflows in GDB

Exploiting other vulnerabilities

Non-control data overwrite

Overwrite other security-sensitive data

No change to program control flow

Set user ID to 0, set permissions to all, etc.



Heap meta-data

Boundary tags similar to doubly-linked list

Overwritten on heap overflow

Arbitrary write triggered on free

Simple version stopped by sanity checks

Heap meta-data

Use after free

Write to new object overwrites old, or vice-versa

Key issue is what heap object is reused for

Influence by controlling other heap operations

Integer overflows

Easiest to use: overflow in small (8-, 16-bit) value, or
only overflowed value used
2GB write in 100 byte buffer

Find some other way to make it stop

Arbitrary single overwrite
Use math to figure out overflowing value

Null pointer dereference

Add offset to make a predictable pointer
On Windows, interesting address start low

Allocate data on the zero page
Most common in user-space to kernel attacks
Read more dangerous than a write

Format string attack

Attacker-controlled format: little interpreter

Step one: add extra integer specifiers, dump stack
Already useful for information disclosure

Format string attack layout Format string attack layout



Format string attack: overwrite

%n specifier: store number of chars written so far to
pointer arg

Advance format arg pointer to other
attacker-controlled data

Control number of chars written with padding

On x86, can use unaligned stores to create pointer


