CSci 427\W
Development of Secure Software Systems
Day 4: Auditing and Threat Modeling 1

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Integer overflow discussion

Integer input parsing

&) Input is first parsed with strtol
® As 64-bit signed integer; overflow clamped and ignored
©) Then copied to signed int
® Throw away top bits, reinterpret sign bit
£) But any 32-bit int value can be produced by a
program input

Loop bound

£) Read loop is
for (int i = 0; i < num_objs; i++)
£) num_objs negative or zero will read nothing at all

Overflow in multiplication

) Struct size is 24 bytes, or 1000 (16+8) in binary
0)24xx == (x << 4) + (x << 3)
) Top three bits fall off

o) Interpreted as unsigned after multiplication, and by
malloc

Vulnerability condition

£) Overflow happens if we write more than we allocated

£) Allocation won't fail on this 64-bit machine (4GB
available)

© 24 - max(x,0) > (24 - x) mod 232

£ Safe if:

® Count interpreted as negative
® Overflow does not occur

©) Unsafe if num_objs >5 0x10000000

Outline

Code auditing

Auditing is. ..

£) Reading code to find security bugs

£) Threat modeling comes first, tells you what kinds of
bugs you're looking for

£) Bug fixing comes next (might be someone else’s job)

Tiers and triage

©) You might not have time to do a complete job, so
use auditing time strategically

©) Which bugs are most likely, and easiest to find?

£) Triage into definitely safe, definitively unsafe, hard to

tell
® "Hard to tell” might be improved, even if safe

Threat model and taint

£) Vulnerability depends on what an attacker might
control

©) Another word for attacker-controlled is “tainted”

©) Threat model is the best source of tainting

information
® Of course, can always be conservative

Where to look for problems

o) If you can't read all the code carefully, search for
indicators of common danger spots

® For format strings, look for printf
® For buffer overflows, look at buffers and copying functions

Ideal: proof

£) Given enough time, for each dangerous spot, be able
to convince someone:
® Proof of safety: reasons why a bug could never happen,
could turn into assertions
® Proof of vulnerability: example of tainted input that
causes a crash

Auditing exercise

©) BCLPR is a buggy program from a previous year’s
5271

£) This code has at least three buffer overflow bugs:
where are they?

©) Are all the bugs exploitable? As an attacker, could
you use them?

http://www-users.cselabs.umn.edu/classes/

Spring-2021/csci4271/slides/02/bclpr.c

Outline

Threat modeling

Why threat modeling?

©) Think about and describe the security design of your
system

©) Enumerate possible threats
©) Guide effort spent on combating threats
£) Communicate to customers and other developers

Why a structured approach?

£) Goal is to avoid missing a threat

£) Enumerate vectors for threats

©) Enumerate kinds of threats per vector

£) Convince readers of the model's completeness

Data-flow modeling

©) Break down software into smaller modules
® Modules drawn with rounded rectangles
® More detail is better, within reason
©) Show data flows among modules and external
parties
® Rectangles for external parties
® Most data flows will be bi-drectional

Data flow example

Web Web
browser server

Business

logic HDatabase]

Trust boundaries

©) A trust boundary groups components with the same
privilege, which therefore trust each other
® Drawn as labeled dotted box
® Attacks usually don't originate within a trust group

£) The boundary also corresponds to an attack surface

Trust boundaries example

Web
browser

I3

Web
server

-

Business
logic

Database J

Data center

{Amazon

Attacks come with data flows

©) Principle: attacks propagate along data flows

£) Therefore, enumerate flows to enumerate attacks
® A more specific prompt, but does not eliminate the need
for imagination
® Other half is types of attacks, see next slide

STRIDE threat taxonomy

£) Spoofing (vs authentication)
£) Tampering (vs integrity)

£) Repudiation (vs. non-repdiation)
£ Information disclosure (vs. confidentiality)
) Denial of service (vs. availability)
) Elevation of privilege (vs. authortization)

What to do about threats

©) Mitigate: add a defense, which may not be complete
©) Eliminate: such as by removing functionality

o) Transfer functionality: let someone else handle it

©) Transfer risk: convince another to bear the cost

©) Accept risk: decide that the risk (probability - loss) is
sufficiently low

Spoofing threat examples

£) Using someone else’s account
£) Making a program use the wrong file
£) False address on network traffic

Tampering threat examples Repudiation threat examples

© Modifying an important file £) Performing an important action without logging

) Rearranging directory structure @) Destroying existing logs

£ Changing contents of network packets ©) Add fake events to make real events hard to find or
not credible

Info. disclosure threat examples DoS threat examples

Eavesdropping on network traffic £) Flood network link with bogus traffic

© Reading sensitive files £) Make a server use up available memory

© Learning sensitive information from meta-data © Make many well-formed but non-productive
interactions

Elevation of privilege threat examples

©) Cause data to be interpreted as code
£) Change process to run as root/administrator
£) Convince privileged process to run attacker's code

