CSci 427\W
Development of Secure Software Systems
Day 2: Memory Safety Introduction

Stephen McCamant
University of Minnesota, Computer Science & Engineering

Outline

Memory safety and security

A large class of problems

) First up, a common class of vulnerabilities in C/C++
programs

©) Exist because these languages do not enforce safe
use of memory

£) An attacker who controls program input can make
the program do what they want

©) Language shifts burden to code, code is incorrect

Ingredient . memory unsafety

£) Some logical limitations on memory usage are
generally not automatically checked in C/C++
® Motivated by speed, simplicity, history
£) Accessing arrays does not check against the size

£) Program must free memory when no longer
needed, then not use
® le, no garbage collection

Ingredient 2: missing input checks

) Constraints on the untrusted input needed for safety
are not checked
£) Many normal uses of the program will still work fine
® Eg, input size not too large
©) Attacks occur on inputs that are rare or only an
attacker would think of
® Usually would have been OK to reject these

Recipe for safe code

£) Safe code needs to ensure that for any value of the
untrusted input, nothing unsafe will happen

£) From pure security perspective, stopping with an
error message is generally safe

£) Like other kinds of bugs, easier said than done

Safe interfaces or better checks

©) General strategy: use features and libraries with an
inherently safer design

® Eg, C+ string class with automatic memory
management

©) General strategy: add more checks for unsafe or
just unexpected conditions
® Allow fewer inputs — fewer attack opportunities

Auditing and testing

£) Reading code looking for security problems is called
a code audit
® Often more effective if the reader has fresh eyes
£) Many security bugs can be found via testing
® Especially randomized automatic testing called fuzzing

After something goes wrong

©) At language level, no guarantees about behavior of
memory-unsafe code
® C undefined behavior means literally anything can happen
©) On real implementations, most unsafe effects
understandable from low-level perspective
® This is where what you learned in 2021 is relevant
©) How an attack succeeds in doing something
interesting is more complex

Mitigation: an arms race

£) Modern systems also make many changes to the

compiler and runtime to try to make attacker’s life
harder

® ASLR, DEP stack canaries, ... more details later

£) But for performance and compatibility, usually not
complete protections

) Attackers also have fancier techniques to avoid them

Outline

Stack buffer overflow

Source-level view (1)

void func(void) {
char buffer[50];
write_200_bytes_into (buffer);

Source-level view (2)

void func(char *attacker_controlled) {
char buffer[50];
strcpy(buffer, attacker_controlled);

Demo break 1

©) Simple palindrome checker:
® Short input — correct behavior
® Normal too-long input — crash
® Malicious too-long input — exploit

Recall: the stack

©) In compiled C code, local variables and other
metadata like return addresses are stored in a
memory region called the stack

©) Structured as a stack with one frame of data per
executing function

©) Starts at a numerically large address and grows to
smaller addresses

Overall layout (Linux 64-bit)

OXFEFFFFFFFFFFFFFT

Kernel
use only

a
0x800 0000

Main lstack
grows|down

0x40000000

o

Static code + data

0x400000

Usually unused

Detail: initial stack

OX7FFfffffffff
Environment/
BholLANG=en_US [0}i686L0] | [AUXV strings

d o e bytes] | | argv strings
14096 / 1371792 15:[1] 0: @|auxv
5

i fROLL] environment
OO argv
" envp

future|growth

Stack frame layout

24(%rbp)

16(%rbp)
8(%rbp)

L %rbp

-8(%rbp)

-16(%rbp)

“top* of
stack
%rsp. [01_|-36(%rbp)

Stack frame overflow

L I2a(srbp)

16(%rbp)

I8(%rbp)

L srbp

|7~ |-8(%rbp)

-16(%rbp)

oca
“top" of ar(20]
stack

%rsp. [0] |-36(%rbp)

Demo break 2

£) How did the attacker know how to overwrite the
return address?

Outline

Reversing the stack

A possible solution

£) Part of what makes this classic attack easy is that
the array grows in the direction toward the function’s
return address

©) If we made the stack grow towards higher addresses
instead, this wouldn't work in the same way

£) Classic puzzler: why isn't this a solution to the
problem?

A concrete example

void func(char *attacker_controlled) {
char buffer[50];

strcpy (buffer, attacker_controlled);
}

What might happen in this example, for instance?

Outline

Other safety problems

Non-contiguous overflow

©) An overflow doesn't have to write to the buffer in
sequence

o) For instance, the code might compute a single index,
and store to it

Heap buffer overflow

©) Overwriting a malloced buffer isn't close to a return
address
£) But other targets are available:

® Metadata used to manage the heap, contents of other
objects

Use after free

©) A common bug is to free an object via one pointer
and keep using it via another

£) Leads to unsafe behavior after the memory is
reused for another object

Integer overflow

£ Integer types have limited size, and will wrap around
if @ computation is too large
£) Not unsafe itself, but often triggers later bugs
® Eg, not allocating enough space

Function pointers, etc.

) Other data used for control flow could be targeted
for overwriting by an attacker

£) Common C case: function pointers
©) More obscure C case: setjmp/longjmp buffers

Virtual dispatch

£) When C+ objects have virtual methods, which
implementation is called depends on the runtime
type

©) Under the hood, this is implemented with a table of
function pointers called a vtable

£) An appealing target in attacking C+ code

Non-control data overwrite

©) An attacker can also trigger undesired-to-you
behavior by modifying other data
©) For instance, flags that control other security checks

Format string injection

£) The first argument of printf is a little language
controlling output formatting

£) Best practice is for the format string to be a
constant

£) An attacker who controls a format string can trigger
other mischief

