University of Minnesota

Scaling Up The Performance of Distributed Key-Value Stores Using Emerging Technologies for Big Data Applications

Hebatalla Eldakiky Advisor: Prof. David H. C. Du Department of Computer Science and Engineering University of Minnesota, USA January 22nd, 2020

- Introduction
- Background & Motivation
- Completed Work
 - TurboKV: Scaling Up the Performance of Distributed Key-value Stores with In-Switch Coordination
 - □ Key-value Pairs Allocation Strategy for Kinetic Drives

Proposed Work

- TransKV: A Networking Support for Transaction Processing in Distributed Key-value Stores (Proposed Project)
- Conclusion
- Future Plan

The Big Data Era (1/2)

We live in the digital era, where data is generated from everywhere

NoSQL Databases become a competitive alternate to the relational DB to store and process the data.

Big Data & Storage Challenges (1/2)

- Storage infrastructure is vital for solving big data problems.
- Enormous amount of data is distributed between several storage nodes which are connected with network switches.
- Network latency plays a critical role in the efficient access of data in this distributed environment.

- Software-defined Networks (SDN) provide efficient resource allocation and flexibility for maximum network performance.
- Network switches also become more intelligent to perform some computational tasks innetwork.

How to use SDN to manage the distributed storage nodes intelligently

Big Data & Storage Challenges (2/2)

Data movement problem

With data intensive application, amount of data shipped from storage drives to be processed by the host is very large.

In-Storage Computing Architecture

Reduce the amount of data shipped between storage and compute

✓ Lower Latency✓ Less energy for data transfer

....

Programmable Networks → In-Network Computing

Programmable Networks

P4 is a high-level language for programming protocol independent packet processors designed to achieve 3 goals.

- Protocol independence.
- Target independence.
- Re-configurability in the field.

Think programming rather than protocols...

What is PISA ?

- Packet is parsed into individual headers.
- Headers and intermediate results are used for matching and actions.
- Headers can be modified, added or removed in match-action processing.
- Packet is deparsed.

Match-Action Processing

- Tables are the fundamental unit in the match-action pipeline
- Each table contains one or more entries
 - An entry contains: specific key to match on, single action, Action data.

Kinetic Drive → In-Storage Computing

 Active KV storage device developed by Seagate.

- Accessible by an Ethernet connection.
- Has CPU and RAM with built-in LevelDB.
- Handle device to device data migration through P2P copy commands.
- Applications communicate with the drive using the Kinetic Protocol over the TCP network.
- Simple API (get, put, delete).

Model No.	ST4000NK0001	
Transfer rate	60 Mbps	Kinetic HDD 4000G8 Defenses Defenses Atomic sesses
Capacity	4 TB	
Key size	Up to 4 KB	A constraints of the second se
Value size	Up to 1 MB	CONCERSION WWW.SEERCH.201

Kinetic Drives Research

- Kinetic Action [ICPADS' 17]
 - Performance evaluation of KD characteristics.
 - Data Allocation [BigDataService' 17]
 - 4 data allocation approaches for KD.

Devices Ethernet Interface Key Value Store

Ethernet

Kinetic Stack

Application

Kinetic Library

Cylinder, Head, Sector

Drive HDA

Our Mission

- Improve data access performance for distributed KV Stores when applications access storage through network.
- Reduce the amount of data shipped from storage devices to be processed by the host in data intensive applications.

Completed Work

- TurboKV: Scaling Up The performance of Distributed Key-value stores with In-Switch Coordination
- Key-value pair allocation strategy for Kinetic drives.
- Proposed Work
 - TransKV: Networking Support for Transaction Processing in Distributed Key-value Stores.

TurboKV: Scaling Up the Performance of Distributed Key-value Stores with In-Switch Coordination^[1]

[1] Hebatalla Eldakiky, David H.C. Du, and Eman Ramadan, "TurboKV: Scaling Up the performance of Distributed Key-value Stores with In-Switch Coordination", under submission to ACM Transaction on Storage (ToS)

Problem Definition

- In distributed Key-value store, data is partitioned between several nodes.
- Partitions management and query routing are managed in three different ways: Server-driven coordination, Client-driven coordination, and Master-node coordination

Why Switch-driven Coordination?

	99.9 th percentile RL	99.9 th percentile WL	Average RL	Average WL
Server- driven	68.9	68.5	3.9	4.02
Client- driven	30.4	30.4	1.55	1.9

Performance of client-driven and server-driven coordination approaches (msec) [DeCandia,SOSP'07]

- Requests pass by network switches to arrive at their target.
- Switch-driven Coordination can carry out
 - Partitions management
 - Query routing

In network switches.

- ✓ Higher Throughput (
- ✓ Lower R/W Latency 🥗

Objectives

- Design in-switch indexing scheme to manage the directory information records.
- Adapt the scheme to the match-action pipeline in the programable switches.
- Utilize switches as a monitoring system for data popularity and storage nodes load.
- Scale up the scheme to multiple racks inside the data center network.

Design Issues

- Data Partitioning
- Data Replication
- ➢ Index Table Design
- Network Protocol

- Key-value Operations Processing
- Load Balancing
- Failure Handling
- \succ Scaling up to the data center networks.

TurboKV Overview

Programmable Switches

- Match-action table stores directory information.
- Manages key-based Routing.
- Provide Query statistics reports to controller.

System Controller

- Load balancing between the storage nodes.
- Updating match-action tables with new location of data.
- Handle failures.

Storage Nodes

• Server library to translate TurboKV packet to the used key-value store.

System Clients

• Client library to construct TurboKV request packets.

TurboKV Data plane Design (1/3)

TurboKV Data plane Design (2/3)

On-Switch Index Table

Match	Action	Action data
sub-range1	key_based_routing	chain = 1,2,3 length = 3
sub-range2	key_based_routing	chain = 2,3,4 length = 3
sub-range3	key_based_routing	chain = 3,4,1 length = 3
sub-range4	key_based_routing	chain = 4,1,2 length = 3

Switch Match-Action Table

Network Protocol

TurboKV Data plane Design (3/3)

TurboKV Control plane Design

Query Statistics and Load Balancing

- Switches count requests directed to each storage node to estimate the load
- Controller
 - \succ pulls monitoring information from switches.
 - \blacktriangleright takes migration decisions.
 - updates switches' match-action tables
 - \succ sends data migration commands to storage nodes.

Storage Failure Handling

- Controller reconfigures the chains of all sub-ranges on the failed storage node.
 - removes the failed storage node from all chains.
 - predecessor of failed node will be followed by its successor.
 - distributes the data on the failed node in sub-ranges units among other functional nodes.
 - adds new nodes at the end of sub-ranges' chains.

Scaling Up TurboKV to Data Center Network

- Hierarchical indexing directory.
- Top levels switches maintain aggregate information from its connected switches.
- Bottom level switches (ToR) maintain detailed records of their local storage nodes.

Controller

- keeps track of each index record and its related records on other switches.
- propagates any record's update to all affected switches.

Guarantees consistency between the switches to reflect any data migration or storage node failures

Simulation Results (1/2)

Workload Write Ratio

Impact of Write Ratio on System Throughput

- TurboKV outperforms Ideal C. C. in high write ratio workloads.
- TurboKV outperforms S. C. by 30% -- 38% in uniform workload, and by 14% -- 42% in the skewed workload

Throughput(Q/s)

Avg.

Throughput vs Skewness - Read only

- TurboKV performs as Ideal C. C. while removing the management load from the client side.
- TurboKV outperforms S. C. by **33% -- 42%**.

Simulation Results (2/2)

Key-value operations Latency for uniform Workload

UNIVERSITY OF MINNESOTA

Key-value Pairs Allocation Strategy for Kinetic Drives^[1]

[1] Hebatalla Eldakiky, David H.C. Du, "Key-Value Pairs Allocation Strategy for Kinetic Drives," 2018 IEEE Fourth International Conference on Big Data Computing Service and Applications (BigDataService), Bamberg, 2018, pp. 17-24, doi: 10.1109/BigDataService.2018.00012

Traditional KV Store Communication Model

Kinetic Drive KV Store Communication Model

By taking the advantage of Kinetic drive as being an independent active device that can carry out all key-value pairs operations on its own.

Goal

Building a low cost Kinetic based key-value Store with its indexing table to exploit parallelism in satisfying user requests and improve the performance of the storage system

Why we are different from others?

- deal with data popularity and the limited drive bandwidth which may lead to performance bottleneck on the drive.
- minimize the number of drives to reduce the cost of building the distributed kinetic-based Key-value store.

Problem Statement

Allocating data into minimum number of kinetic drives to be accessible by applications while satisfying the data size and bandwidth requirements.

Challenges

- Each kinetic drive has limited size and limited bandwidth.
 - \succ It can only hold certain amount of key-value pairs.
 - \succ It can only serve limited number of requests concurrently.
- User requests are not uniformly distributed across all key ranges (hot key ranges, cold key ranges).
 - Hot key: searched by users frequently (high bandwidth requirement).
 - Cold key: not searched frequently (low bandwidth requirement).

Problem Definition and Challenges (2/2)

- Number of key-value pairs are not uniformly distributed across all key ranges (dense key ranges, scarce key ranges)
 - dense key range: Lots of key-value pairs (high size requirement).
 - scarce key range: few key-value pairs (low size requirement).
- Because of the 80/20 rule in data science, we can see that only 20% of data is accessed 80% of the time and vise versa.

- Waste drive capacity

- Consume drive capacity
- The metadata server may become a bottleneck point if the searching time for the drive IP takes long time.

Our Approach

Problem Input

• Set of kinetic drives, each of size S and bandwidth B. KD

• Set of key ranges KR_1, KR_2, \dots, KR_M each of them has bandwidth requirement (B_i) and size requirement (S_i) . KR_i

$$B_i = \dots$$
$$S_i = \dots$$

• Each of S_i and B_i is a ratio from the drive size and bandwidth.

Min. no. of drives = Max (N_B, N_S) Theoretical
Lower Bounds $N_B = \frac{\sum_{i=1}^{M} B_i}{B}$ $N_S = \frac{\sum_{i=1}^{M} S_i}{S}$

- We modeled the problem as the **multi-capacity bin packing** problem.
 - Each drive represents a bin with multiple capacities (S, B, no. of KR/drive).
 - Each KR represents an item with multiple requirements (size, bandwidth).
- As being a **NP-complete** problem, we develop a heuristic approach to allocate the KR(s) into **near-optimal** no. of drives.
 - key ranges preprocessing to merge some consecutive ranges.
 - \blacktriangleright Key ranges sorting with weighted sorting function.
 - \blacktriangleright Key ranges allocation with our proposed best candidate criteria.

Experimental Results (1/2)

- Using the parameters of the current model of Kinetic drive ST4000NK0001 with storage capacity of 4 TB and transfer rate up to 60 MB/s.
- Testing algorithm under different KV pair sizes.
- Performance Metrics
 - \succ the total number of drives used.
 - The size of the index table.
- We compare our approach with the theoretical lower bound on number of drives used and the starting size of index table.

Experimental Results (2/2)

- No. of drives is closer to the lower bound when KV size is small.
- Proposed algorithm results aren't affected by the workload characteristics.
- Our approach achieves reduction in the size of the index table up to 57%.

TransKV: Networking Support for Transaction Processing in Distributed Key-value Stores

Key-value Stores & Transactions

- Key-value Stores are popular for their simple API, unbounded scalability and predictable low-latency.
- Some applications built on these key-value stores employ non-trivial concurrent transactions from multiple clients.

State of art Solution (DynamoDB)

Proposed Solution (TransKV) (1/2)

- **Programmable Switch**
 - Routing requests to target storage nodes.
 - Transaction coordinator to decide whether transaction can be pushed for completion or aborted in the network.
- System Controller

UNIVERSITY OF MINNESOTA

- Update Cache and indexing information.
- Log management for failure recovery.
- Transaction Coordinator for non-cached Key-value pairs.

Recirculate the cloned packet to go through ingress pipeline

Proposed Solution (TransKV) (2/2)

- Timestamp Ordering C. C. in the switches and managed by the controller.
- Each transactional operation is cloned and the switch sends a copy to the controller for log management and failure recovery.
- Transaction management is based on the hottest key-value pairs cashed in the switches data plane for space limitation.
- Transactions that span multiple storage nodes with set of operations (read set, write set).
- Hierarchical caching to scale up for data center network.

Conclusion

- Improve data access performance for distributed key-value stores when applications access storage through network. (In-Network Computing)
- Reduce the amount of data shipped from storage drives to be processed by the host in data intensive applications. (In-Storage Computing)
- Completed Work
 - TurboKV: Scaling Up The performance of Distributed Key-value stores with In- Switch Coordination (In-Network Computing).
 - Key-value pair allocation strategy for Kinetic drives (In-Storage Computing)

Proposed Work

TransKV: Networking Support for Transaction Processing in Distributed Key-value Stores (In-Network Computing)

- Design and Implementation of TransKV.
- December, 2020: Dissertation.
- January, 2021: Defense.

Thank You

Questions

