University of Minnesota

Scaling Up The Performance of Distributed Key-Value
Stores Using Emerging Technologies for Big Data
Applications

Hebatalla Eldakiky
Advisor: Prof. David H. C. Du
Department of Computer Science and Engineering

University of Minnesota, USA
January 229, 2020

Talk Outline ﬁl

 |ntroduction
« Background & Motivation
« Completed Work

- TurboKV: Scaling Up the Performance of Distributed Key-value Stores with In-Switch
Coordination

- Key-value Pairs Allocation Strategy for Kinetic Drives

* Proposed Work

 TransKV: A Networking Support for Transaction Processing in Distributed Key-value Stores
(Proposed Project)

e Conclusion
 Future Plan

The Big Data Era (1/2)

We live In the digital era, where data is generated from everywhere

& The Digital &

i Itori /7. ‘ Universe is Huge
Bridge Monitoring. B vty ; 4 4 i crowiné 4 4
, v - N b Ll 4 "o E tiall :
Environment Controls. , M . < \f i ZB P | ZB
Elder Care Monitoring. : .ZJB;:O
.

Forest Management. . Vil <

-
- A
Y v
o -
s
v

Soil Monitoring.

Internet of Things.

020" thiek 128 6B

Social Media.

500'“ in Zettabytes Unprecedented Data Growth

Smart Phones.
. 45
and more..... ey /) -

35

Embedded computer
and network board 0

L : 2012 2013 2020
6000 tweets/sec (©)2017, Effective Business Intelligence with Quick Sight

r— R
m.., UNIVERSITY OF MINNESOTA

The Big Data Era (2/2)

NoSQL Databases become a competitive alternate to the relational DB
to store and process the data.

NoSQL DB 400
!
Document Graph DB Column DB Key-Value - o
DB Store .

.m"“g" 4 InﬁniteGraph 4;‘1’1’9;\\? Amazon

-+ Key-value Stores

DynamoDB 0
cassandra
RARPARACHE levelpe
CouchDB - HBHSEA é -+ Relational DBMS
redls

2013 2014 2015 2016 2017 2018 2019 2020

Big Data & Storage Challenges (1/2)

® Storage infrastructure is vital for solving big
data problems.

® Enormous amount of data is distributed
between several storage nodes which are
connected with network switches.

® Network latency plays a critical role in the
efficient access of data in this distributed
environment.

Storage Infrastructure
.M. UNIVERSITY OF MINNESOTA

¢ Software-defined Networks (SDN) provide
efficient resource allocation and flexibility for
maximum network performance.

® Network switches also become more intelligent
to perform some computational tasks in-
network. o S

How to use SDN
to manage the
distributed
storage nodes
intelligently

Big Data & Storage Challenges (2/2)

w2l

Conventional Architecture

f Host \

Execute
CPU DRAM Query

Host Interface
Read Return
Data Data

Storage Device

Data movement problem

With data intensive application, amount of data
shipped from storage drives to be processed by the
host is very large.

In-Storage Computing Architecture
(Host \

CPU DRAM

Host Interface
Send Return
Query Query
Results

Storage Device
oPU iy Execute
evice uer
[(ARM Processor)] [DRAM] Query

Reduce the amount of data shipped between
storage and compute

v' Lower Latency @
v Less energy for data transfer

Programmable Networks = In-Network Computing ﬂl
Programmable Networks / \
P

| 4 is a high-level language for
Petwork . Switch OS programming protocol independent
packet processors designed to

M achieve 3 goals.

 Protocol independence.
« Target independence.
* Re-configurability in the field.

“This is how | want the
network to behave and

how to switch . :
packets...” Think programming rather than

(the user / controller . protocols...
makes the rules) P4 Programmable
Device

.M. UNIVERSITY OF MINNESOTA

What is PISA ?

Programmer declares the Programmer defines the Programmer declares
} [e A } L I G S
Programmable Match-Action Pipeline
Programmable A Programmable
Parser s \ Deparser
— : AHL 1R = I =
] .
= ; | (. —
— Ll) e (., T —
— : I - e &0 —
— [[r—
HEE B s E> -

* Packet is parsed into individual headers.

* Headers and intermediate results are used for matching and actions.

* Headers can be modified, added or removed in match-action processing.
* Packet is deparsed.

Match-Action Processing ﬁl

* Tables are the fundamental unit in the NTWORKS 2
match-action pipeline NetFPGA
Tofino SUME

* Each table contains one or more entries

. . . Processing dela <1lps
> An entry contains: specific key to match on, single A g

action, Action data. 4 :
. Systems use programmable switches

Control Plane :
® NetCache [SOSP’ 17]
>(ﬁ > On-switch cache for Load Balancing (LB).
Headers and Metadata —>) :
Lookup Key \ Hit ® NetChain | NSDI 18]
'Y ey|Action [D|Action Data :l - _; » on-switch KV store for small data.
—> Acti : :
| S = >{executon | ® DistCache [FAST’ 19]
Q == Unit 0]) .
5 : S @ > » » multiple racks on-switch cache for LB
efault | Default Action _)/ D aF . .
) ActionlD] _ Data ? ® iSwitch [ISCA '19]
D
T ey e » on-switch aggregation for distributed RL

Kinetic Drive = In-Storage Computing

Kinetic Stack / \ / _
3 o3 [@
':(\ipnrzeltliccat_li(i)nrary ﬁ * Active KV storage device 1*‘”*"? SEAGATE

developed by Seagate.

* Accessible by an Ethernet (-
connection. Transfer rate 60 Mbps
* Has CPU and RAM with built-in Capacity 47B
LevelDB. Key size Up to 4 KB
Value size Upto 1 MB

* Handle device to device data
migration through P2P copy 4
commands. Kinetic Drives Research

* Applications communicate with the
. drive using the Kinetic Protocol
over the TCP network. o

_ Data Allocation [BigDataService' 17]
° Slmple API (get, pUt, delete)-/ » 4 data allocation approaches for KD.

® Kinetic Action [ICPADS’ 17]

> Performance evaluation of KD characteristics.

Devices
Ethernet Interface

Key Value Store

Cylinder, Head, Sector
Drive HDA

.M. UNIVERSITY OF MINNESOTA

Our Mission

* Improve data access performance for distributed

KV Stores when applications access storage g m h
through network. pops | W pvem Qs < retailg[
* Reduce the amount of data shipped from kA-'ETTELF'!&'c‘?L A 3ot)

storage devices to be processed by the host in P <

data intensive applications. <
KV Stores "":;% @ DamazonDB
cassandra levelos ynamo
* Completed Work N)

» TurboKV: Scaling Up The performance of
Distributed Key-value stores with In-Switch
Coordination

» Key-value pair allocation strategy for Kinetic
drives.

* Proposed Work

» TransKV: Networking Support for Transaction
Processing in Distributed Key-value Stores.

AR, UNIVERSITY OF MINNESOTA

Storage
Infrastructure

Completed Work (1/2) ﬂl

TurboKV: Scaling Up the Performance of Distributed Key-value
Stores with In-Switch Coordination!!!

[1] Hebatalla Eldakiky, David H.C. Du, and Eman Ramadan, “TurboKV: Scaling Up the performance of Distributed Key-value Stores with In-Switch
Coordination”, under submission to ACM Transaction on Storage (ToS)

AR, UNIVERSITY OF MINNESOTA

Problem Definition

ARE

* In distributed Key-value store, data Is partitioned between several nodes.

* Partitions management and query routing are managed in three different ways:
Server-driven coordination, Client-driven coordination, and Master-node coordination

/ Server-driven Coordination \
Reply sent to
2
Re-direct to right

the client
storage node

\
3
/
Request sent to

random instance

x Increase query response time.
v' Client doesn’t need to link any code

\ to the KV store. /

.M. UNIVERSITY OF MINNESOTA

/ Master-node Coordination \

Request directed to
the right instance Request sent

> to master node
<\
“

-
/
Reply sent to the client

x Increase query response time.
x Single point of failure.
v" Client doesn’t need to link any code

\ to the kV store.

/ Client-driven Coordination \

Reply sent
to the client

.

Request sent to
target storage node

x Periodic pulling of updated directory info.
x client needs to link code related to the
used KV store.

(Decrease query response time. /

13

Why Switch-driven Coordination? ﬂ

. Re uest forwarded to S4 based on load
- 99.9t percent“e Average RL Average gi (1%4 forwarded the request to S1
RL percent“e WL WL Switch Routing Table

Server- 68.9 68.5 4.02 (1) Request: Get(K2@ IP | Port |o it Lses
driven S1| P1 | L3routing
Client- 30.4 30.4 1.55 1.9 Switch 54| P4
driven P4
My P1 P2 \ S4 Mapping Table
Performance of client-driven and server-driven coordination approaches (msec) [DeCandia,SOSP'07] (2) Key | Node

* Requests pass by network switches to arrive @ @ ot
at their target.

* Switch-driven Coordination can carry out Switch Match-Action Table
: Key Action Data
» Partitions management “mequem'GEt(m@ K1 [port_forward | port=P3
> . Programmable if*z port_forward | port=P1
Query routing (2) Request Switch drop
In network switches. Igngfrded PT_ [P2

v Higher Throughput
v' Lower R/W Latency

.M. UNIVERSITY OF MINNESOTA

Objectives ﬂl

* Design in-switch indexing scheme to manage the directory information records.

* Adapt the scheme to the match-action pipeline in the programable switches.

* Utilize switches as a monitoring system for data popularity and storage nodes load.
* Scale up the scheme to multiple racks inside the data center network.

Design Issues

» Data Partitioning » Key-value Operations Processing

» Data Replication » Load Balancing

» Index Table Design » Failure Handling

» Network Protocol » Scaling up to the data center networks.

AR, UNIVERSITY OF MINNESOTA

TurboKV Overview

Y
N

Programmable Switches ’ ™
* Match-action table stores directory information. Client Application
* Manages key-based Routing. i Clients

_ o TurboKV Client
* Provide Query statistics reports to controller. Library

System Controller
* Load balancing between the storage nodes.

* Updating match-action tables with new location of data.
* Handle failures.

TurboKV
Controller

Standard L2/L3 Key-based Query Statistics
Routing Routing Module

Storage Nodes
* Server library to translate TurboKV packet to the used
key-value store.

Programmable Switch

. TurboKV S
System Clients by

* Client library to construct TurboKV request packets. [

Key-vlaue Store

Distributed Storage Servers

.M. UNIVERSITY OF MINNESOTA

TurboKV Data plane Design (1/3)

Recirculate the cloned packet to go through ingress pipeline

Key-based Routin I
Yes = Range match- y g _l:_) - Yes Update
arse Pl action Table _) " ey-range Headers
TurboKV Query * Query I OpCode and packet
Header » Processing Statistics || I cloning =3
ash match- I No
T'-(‘D"It?ofv action Table L >
—) ien 1
Packet In Packet ! II Packet Out
1 IPv4 Routing II
:| > Table L >
II II
' Ingress Pipeline |I ss Pipeline
[]

S Logical View of TurboKV Data Plane Pipeline
Range Partitioning

Total Key Span

Chain Replication

Hash partitioning

Hash Function Output Range

N

KR, | KR KR+ CHR HR, RO H e
1] 21 N 1] 2 - - N
K4 K; K Km Kp 1 H H; Hn Hj
Key Range| Storage Nodes Hash Range| Storage Nodes
Ki--Ki |R1=82 R2=S3 H1--Hi |R1=S2 R2=S3
Kiz1 --Ki |R1=S1,R2=S4 Hi,1—-H; |R1=S81,R2=54
Km--Kn |R1 =S4, R2=S83 Hm - Hn, |R1 =S4, R2=S3

.M. UNIVERSITY OF MINNESOTA

TurboKV Data plane Design (2/3) ﬂ

On-Switch Index Table Network Protocol
L2/L3 Routing TurboKV Header for key-based Routing
Programmable Sub-range | Storage Nodes C - s - a]
Switch Sub-rangel IP,,IP,, IP, Ethernet| IP |OPCode| Key | endKey/hashKey |Payload

P1 P2 P3 P4 ETH Type to =
Mt ToS for The Range end in case of
SUb'rangez IP2, IP3, IP4_ d-'rSJ'rT)gl:('\S/h partitioning GEL, ';l;I [e)elete, Range OpCode/ hashedKey
Packots type g in case hash partitioning

- Sub-range3 IP5,IP,, IP;

Sub-range4 IP,,IP;,IP, ‘

Match Acti Action dat . | .
& een T L21L3 Routing TurboKV Header for key-based Routing ~ Chain Header
sub-range1 | key_based_routing Iength_:(;’ ’ ¢ 1 r 8 Y A \
. chain=23,4

sub-range2 | key_based _routing length = 3 Ethernet| P |OPCode| Key [endKey/hashKey | Clength |SqpfSoIP]..{Snip|Cp| Payload
sub-range3 key based routing ;;hna;?h:_i’)écl, 1 T \ - Y /

— ypeto The Range end in case of Range . .
sub-range4 key_based_routing chain = 4,1,2 distinguish IEIS fu_r o FI;UT' Deke, [ODCMEI hashedKey in case hash || Chain Length IPs of nodes in chain valuela d?fdfto

i length =3 Tty || PP pationng folowed by cent Pat | e
Switch Match-Action Table Packes_J|_ "

' the end
P4| 1P IP4 IP4

L2/L3 Routing
Nodes port Array | P4 | Po| P3| P4 s s 3

Registers Arrays Ethernet| IP | Payload

AR, UNIVERSITY OF MINNESOTA

Nodes IP Array

TurboKV Data plane Design (3/3) ﬂ

Head Replica Tail

Key-value Operations Processing

PUT (K,value) @ @ @ RANGE (K10, K100)

Ether | IP |Range| K10 | K100| Payload

Ether | IP | Put| K | h(K) | Payload (value)

‘ GET (K) At egress pipeline
®=STF Ether | 1P| Get| K | h)| Payload [0~ Ko
ctner| “F=>" [Put | K [n(K) | Clengih =3 [S2 1S3 1P|C IP|Payload (Value = E LI e Packet out
‘ ‘ [Kloo = KBO]_> Ether| g2y |Range(K1o| Kao

=5IP -
Put| K | n(K) | Clength = 2[S3 IP|C IP| Payload (value)| | |EMe'| Tos=2 | €| K | K) | Clength=1]CIP| Payload

4 \ 4

Ether| dst=CIP |Payload (Result)

dst=S2IP
ToS=2

Ether

[K31— Kso]l Recirculate | Ether | IP [Range{ K31 | K1oo| Payload

ToS=2

Ether| sy | Put| K [n(K) [Clength = 1 [C 1|Payload (value)

‘ KSO K120

Ether| dst=CIP |Payload (Result) Packet out
Ki00 = Ki20

Packet out
KlOO < K80 — Ether dst=S3IP Range[K31| Ko

Recirculate | Ether | IP [Range| Ks1 | K1go| Payload

h

|

dst=S11P

Ether| "1,522

Range[Ks1| Kioo

.M. UNIVERSITY OF MINNESOTA

TurboKV Control plane Design ﬁ

Query Statistics and Load Balancing

Controller

Controller Index Tabla

Sysiem Global Wi

Key Range | Mode IP

Mode IP | Node Specification | Current Load

Control Plane

AddRemove
Table Entries

Reports to Controdler

Mafch-Action Table

HINNNNNNREED |

Per-Key Range Counter for each record in Match-Action Table

* Switches count requests directed to each

Switch Data Plane

storage node to estimate the load

* Controller

» pulls monitoring information from switches.
> takes migration decisions.
» updates switches’ match-action tables

» sends data migration commands to storage nodes.

.M. UNIVERSITY OF MINNESOTA

Storage Failure Handling

Old Chain: S1,52,S3,54
New Chain: S$1,83,54,S5

OnOxONO

(2)
Controller reconfigures the chains of all sub-ranges
on the failed storage node.
» removes the failed storage node from all chains.

predecessor of failed node will be followed by its successor.

>

» distributes the data on the failed node in sub-ranges units
among other functional nodes.

>

adds new nodes at the end of sub-ranges’ chains.

Scaling Up TurboKV to Data Center Network ﬂl

* Hierarchical indexing directory.

* Top levels switches maintain aggregate information from its connected switches.

* Bottom level switches (ToR) maintain detailed records of their local storage
nodes.

Controller

» keeps track of each index record and its related
records on other switches.

» propagates any record’s update to all affected
switches. ToR

Guarantees consistency between the switches to — —
reflect any data migration or storage node failures [T e [III_e

AR, UNIVERSITY OF MINNESOTA

Simulation Results (1/2)

In-switch Coordination(TurboKV) Il o 060 —

Client-driven Coordination(ldeal) & 5 TurboKV-uniform —e—
faa\ Server-driven Coordination : = Client(ldeal)-uniform - -
= - Server-uniform —a-
g _8' 45 - TurboKV-zipf0.95
—

- (@) A Client(Ideal)-zipf0.95 =< -

_8' 8 "‘*-‘,\r Server-zipf0.95

2 s 30 -

- _C "‘"--.‘_”

9 e At A AR A — 4

c . ~r g -2

— o e

2 <155 02 04 06 08 1

< uniform zipf-0.9 zipf-0.95 zipf-1.2 - - - -

Workload Distribution Workload Write Ratio

Throughput vs Skewness - Read only Impact of Write Ratio on System Throughput

* TurboKV performs as Ideal C. C. while removing the * TurboKV outperforms Ideal C. C. in high write ratio workloads.

management load from the client side. °

TurboKV outperforms S. C. by 33% -- 42%.

TurboKV outperforms S. C. by 30% -- 38% in uniform
workload, and by 14% -- 42% in the skewed workload

AR, UNIVERSITY OF MINNESOTA

Simulation Results (2/2)

ARE

Key-value operations Latency for uniform Workload

In-Switch Coordination(TurboKV) —e— In-Switch Coordination(TurboKY) —e— In-Switch Coordination(TurboKV) —e—
Client-based Coordination(ldeal) -#- Client-based Coordination(ldeal) -+- Client-based Coordination(ldeal) -#-
Server-based Coordination —a— Server-based Coordination -4- Server-based Coordination —a-
[s WG WIS SR o [B - 1 _ I._H:_:.,_.,._.,._.,_,._,.7_774
; +
w 0.75 Avg 16 3% w 0.75 g, o A vg""1'1'%"' w 0.75 g Avg: 18.3%
o 051 99m----1-9---2% O 0.5 :'; """"""" 99th-12:3% o 05p ;99th 24. 7%
025 '_-,-' ---------------------] 025 | gh 0.25 -
0 005 01 015 02 025 005 015 025 035 0.05 0.15 0.25
Read Latency(sec) Write Latency(sec) Scan Latency(sec)
7 - 10% I
Key-value operations Latency for zipf-1.2 Workload With C. C.
In-Switch Coordination(TurboKYV) —e— In-Switch Coordination(TurboKYV) —e— In-Switch Coordination(TurboKV) —e—
Client-based Coordination(ldeal) —a— Client-based Coordination(ldeal) -#- Client-based Coordination(ldeal) -#-
Server-based Coordination -#- Server-based Coordination -4- Server-based Coordination —4-
T AU S N 1 S I U S
w 075 AVt(_ig 30% L 075") AV%ZQ% . AV% 15 4%
th- ; th- i
S 05 _____9_9__5__.__4_9%) S o5k W99 48% ¥99™: 19%..
0.25 : : 0.25 ‘ | : :
0 005 01 015 02 025 005 015 025 035 0.05 0.15 0.25
Read Latency(sec) Write Latency(sec)

Scan Latency(sec)

AR, UNIVERSITY OF MINNESOTA

Completed Work (2/2) ﬂ

Key-value Pairs Allocation Strategy for Kinetic Drives!!]

[1] Hebatalla Eldakiky, David H.C. Du, "Key-Value Pairs Allocation Strategy for Kinetic Drives," 2018 IEEE Fourth International Conference on
Big Data Computing Service and Applications (BigDataService), Bamberg, 2018, pp. 17-24, doi: 10.1109/BigDataService.2018.00012

Traditional KV Store Communication Model ﬂl

(1)

The client sends the key to

Client

B Client e\ | the storage server.
| Client N/\’

/o |

er

Server Bottleneck — Performance Degradation
t and

- " efches the data from one of
the connected drives.

=7

e server sends the
ack to the client.

J

(3) Data
o
DT

Storage Server
(2) Fetch from drive

Intensijve I/0 within the
Server to handle all
requests ang
Compaction Operation
on the Connected
drives

SSD/HDD managed by Storage

.M. UNIVERSITY OF MINNESOTA

Kinetic Drive KV Store Communication Model ﬂl

~

(1)

I ﬁ The client sends the key to
the Metadata server.

Q Client T Client (

Each KD is a small independent KV storage so we can exploit

Parallelism using multiple KDs to overcome Server Bottleneck
g 3)

Client

IN— U

¥
% e — The client contacts the drive

o with the IP and sends the key
S L to it.)
((4))

Kinetic Dri Kinetic Dri The drive processes the
. 3 . INetic prive Inetic vrive

Metadata Server Kinetic Drive request locally and sends the

Ethernet Connection \ data back to the client.)

.M. UNIVERSITY OF MINNESOTA

Motivation ﬁl

By taking the advantage of Kinetic drive as being an independent active
device that can carry out all key-value pairs operations on its own.

Goal

Building a low cost Kinetic based key-value Store with its indexing table to exploit
parallelism in satisfying user requests and improve the performance of the storage system
)

Why we are different from others?

* deal with data popularity and the limited drive bandwidth which may lead to performance
bottleneck on the drive.

* minimize the number of drives to reduce the cost of building the distributed kinetic-based
Key-value store.

AR, UNIVERSITY OF MINNESOTA

Problem Definition and Challenges (1/2) ﬂl

Problem Statement

Allocating data into minimum number of kinetic drives to be accessible by applications
while satisfying the data size and bandwidth requirements.

Challenges

* Each kinetic drive has limited size and limited bandwidth.
> It can only hold certain amount of key-value pairs.
> It can only serve limited number of requests concurrently.

* User requests are not uniformly distributed across all key ranges (hot key ranges,
cold key ranges).
» Hot key: searched by users frequently (high bandwidth requirement).
» Cold key: not searched frequently (low bandwidth requirement).

AR, UNIVERSITY OF MINNESOTA

Problem Definition and Challenges (2/2) ﬂl

°* Number of key-value pairs are not uniformly distributed across all key ranges (dense
key ranges, scarce key ranges)

» dense key range: Lots of key-value pairs (high size requirement).

» scarce key range: few key-value pairs (low size requirement).

* Because of the 80/20 rule in data science, we can see that only 20% of data is
accessed 80% of the time and vise versa.

[Hot (scarce) Key] [Cold (dense) Key]
Range Range
= =
- Consume drive bandwidth - Waste drive bandwidth
- Waste drive capacity - Consume drive capacity

* The metadata server may become a bottleneck point if the searching time for the drive
IP takes long time.

M. UNIVERSITY OF MINNESOTA

Our Approach

Problem In
oble put Min. no. of drives = Max (NB, Ng)

* Set of kinetic drives, each of size S

and bandwidth B. KD Theoretical 1B No — Ziwls.
Lower Bounds $T T s
Bandwidth = B
Size=S

* Setof key ranges KRy, KR,, KRy, [® We modeled the problem as the multi-capacity bin

: packing problem.
each of them has bandwidth » Each drive represents a bin with multiple capacities (S, B, no. of

requirement (B;) and size KR/drive).
requirement (S;). KR. » Each KR represents an item with multiple requirements (size,
L bandwidth).
B;=.... * As being a NP-complete problem, we develop a heuristic
[Si= e] approach to allocate the KR(S) into near-optimal no. of

drives.

» key ranges preprocessing to merge some consecutive ranges.
» Key ranges sorting with weighted sorting function.
» Key ranges allocation with our proposed best candidate criteria. /

AR, UNIVERSITY OF MINNESOTA

* Eachof S; and B; is a ratio from the
drive size and bandwidth.

Experimental Results (1/2) ﬂl

* Using the parameters of the current model of Kinetic drive ST4000NK0001
with storage capacity of 4 TB and transfer rate up to 60 MB/s.

* Testing algorithm under different KV pair sizes.

* Performance Metrics
> the total number of drives used.
> The size of the index table.

* We compare our approach with the theoretical lower bound on number of
drives used and the starting size of index table.

AR, UNIVERSITY OF MINNESOTA

Experimental Results (2/2)

~ 310 ‘© 500
2 C Base-Index-Record o
() _ -@- ~ ase-lndaex-records
= Lower-Bound + § 400 [our-ppproach
o 200 . Our-Approach -@- , S
> % .
a < 200 |- ¢
« 100 — 9
© = ¥
S 04 - 5 e
= 10.— S 10‘_ | | |
0 7 8 9 510 =
Key-Value Size in KB (Log) Key-Value Size in KB (Log)

* No. of drives is closer to the lower bound when KV size is small.
* Proposed algorithm results aren’t affected by the workload characteristics.
* OQOur approach achieves reduction in the size of the index table up to 57%.

AR, UNIVERSITY OF MINNESOTA

Proposed Project ﬂl

TransKV: Networking Support for Transaction Processing in
Distributed Key-value Stores

AR, UNIVERSITY OF MINNESOTA

Key-value Stores & Transactions ﬂl

* Key-value Stores are popular for their simple API, unbounded scalability
and predictable low-latency.

* Some applications built on these key-value stores employ non-trivial
concurrent transactions from multiple clients.

apagon Tens of millions requests that result in Concern with KV Stores
over 3 million checkouts in a single day. Scalability and Predictable Performance
Placing online Order A Transactions?
p\e«/:\’t\l
2 books . & Atomicity Latency o®
—— . Dead
retail g Consistency et/Put lock
» Aof
(1) (2) 2 Books Loy . \,a(“a“o
Customer (3) exist ?? ISOlatlon S
exists ?? Cp)kil (4) Update books Ing
r er t t -
inventory amaoun Durablllty - erference
Scale
Correct Database State Cost
@2019, FAST'19 [Doug Terry, Keynote]

State of art Solution (DynamoDB) ﬂl

: . Non transactional request
* Group multiple actions together and !
submit them as a single all-or-nothing ‘ -
OperaﬁOn. request Transaction — = e:/ i
» TransactWriteltems Di SR : oot ieyed
' ey reply Abort/completed | o | 2. read/write
» TransactGetltems. Application - : 7. result
{ Tr o1
R oute Coordinator
TransactWriteltem TurboKV TransKV
Storage
Latency Nodes
TransactGetltem

Get/Put All communications are carried
oo™ [Network out through network switches->
eques _ _
more forwarding steps
>

@ Increase Latency

Scale Storage
Nodes

.M. UNIVERSITY OF MINNESOTA

Proposed Solution (TransKV) (1/2) ﬁ

* Programmable Switch
» Routing requests to target storage nodes.
» Transaction coordinator to decide whether « i
transaction can be pushed for completion or %
aborted in the network. request ©
gi - > [Programmable Storage Nodes

. Ve
* System Controller Switch %
U

* Update Cache and indexing information. @
* Log management for failure recovery.

* Transaction Coordinator for non-cached
Key_value palrs Recirculate the cloned packet to go through ingress pipeline

~ completed/abort

Key-based Routing

Updaie
Yes J]

Egress Pipeline

res Parse , | key-range | 3| Headers
(3 Custom , Indexlng i Query > Query II OpCode and packet
Headers I"'1ar1-rar§2:1ent at.?.g;fl':tmn Procassing Statistics Il l. No cloning =3
L
. 1)..
tomized 1 1
> cus .
Packet In Paket Mo :I abort ll Pal:)k;t Out
> ParselP 1 n
Headers II Table .' >
I|]
1
1

Ingress Pipeline

Parser I

.M. UNIVERSITY OF MINNESOTA

Proposed Solution (TransKV) (2/2) ﬂl

* Timestamp Ordering C. C. in the switches and managed by the controller.

* Each transactional operation is cloned and the switch sends a copy to the
controller for log management and failure recovery.

* Transaction management is based on the hottest key-value pairs cashed Iin
the switches data plane for space limitation.

* Transactions that span multiple storage nodes with set of operations (read
set, write set).

* Hierarchical caching to scale up for data center network.

Match Action Action Data
R-TS Array R1[R2| R3|R4 Keyl test-tranx-for-processing TS-index = 1, val
Key2 test-tranx-for-processing TS-index = 2, val
W-TS Array WIW2| W3 W4 Key3 test-tranx-for-processing TS-index = 3, val
Key4 test-tranx-for-processing TS-index = 4, val
Accepted T-TS [T1|T2 |T3|T4 | O - -
Key5 test-tranx-for-processing TS-index = 5, val

AR, UNIVERSITY OF MINNESOTA

Conclusion ﬂl

* Improve data access performance for distributed key-value stores when
applications access storage through network. (In-Network Computing)

* Reduce the amount of data shipped from storage drives to be processed by
the host in data intensive applications. (In-Storage Computing)

* Completed Work

» TurboKV: Scaling Up The performance of Distributed Key-value stores with In- Switch
Coordination (In-Network Computing).

» Key-value pair allocation strategy for Kinetic drives (In-Storage Computing)

* Proposed Work

» TransKV: Networking Support for Transaction Processing in Distributed Key-value Stores
(In-Network Computing)

AR, UNIVERSITY OF MINNESOTA

Future Plan

* Design and Implementation of TranskV.
* December, 2020: Dissertation.
* January, 2021: Defense.

AR, UNIVERSITY OF MINNESOTA

Thank You

Questions

?

