
University of Minnesota

Scaling Up The Performance of Distributed Key-Value

Stores Using Emerging Technologies for Big Data

Applications

Hebatalla Eldakiky

Advisor: Prof. David H. C. Du

Department of Computer Science and Engineering

University of Minnesota, USA

January 22nd, 2020

2

Talk Outline

• Introduction

• Background & Motivation

• Completed Work
❑ TurboKV: Scaling Up the Performance of Distributed Key-value Stores with In-Switch

Coordination

❑ Key-value Pairs Allocation Strategy for Kinetic Drives

• Proposed Work
❑ TransKV: A Networking Support for Transaction Processing in Distributed Key-value Stores

(Proposed Project)

• Conclusion

• Future Plan

3

The Big Data Era (1/2)

We live in the digital era, where data is generated from everywhere

Bridge Monitoring.

Environment Controls.

Elder Care Monitoring.

Forest Management.

Soil Monitoring.

Internet of Things.

Social Media.

Smart Phones.

and more…..

6000 tweets/sec

New 4 PB/day

C 2017, Effective Business Intelligence with Quick Sight

4

The Big Data Era (2/2)

NoSQL Databases become a competitive alternate to the relational DB

to store and process the data.

NoSQL DB

Document

DB
Graph DB Column DB

Key-Value

Store

RAMCloud

5

Big Data & Storage Challenges (1/2)

• Storage infrastructure is vital for solving big

data problems.

• Enormous amount of data is distributed

between several storage nodes which are

connected with network switches.

• Network latency plays a critical role in the

efficient access of data in this distributed

environment.

Storage Infrastructure

• Software-defined Networks (SDN) provide

efficient resource allocation and flexibility for

maximum network performance.

• Network switches also become more intelligent

to perform some computational tasks in-

network.

How to use SDN

to manage the

distributed

storage nodes

intelligently

6

Big Data & Storage Challenges (2/2)

Storage Device

CPU DRAM

Host

Host Interface
Read

Data

Return

Data

Execute

Query

Data movement problem
With data intensive application, amount of data

shipped from storage drives to be processed by the

host is very large.

Reduce the amount of data shipped between

storage and compute

Conventional Architecture In-Storage Computing Architecture

CPU DRAM

Host

Host Interface
Send

Query

Return

Query

Results

Execute

Query
CPU

(ARM Processor)
Device

DRAM

Storage Device

 Lower Latency

 Less energy for data transfer

7

Programmable Networks  In-Network Computing

“This is how I want the

network to behave and

how to switch

packets…”

(the user / controller

makes the rules)

Network Demands

P4

Feedback

Switch OS

Run-time API

Driver

P4 Programmable

Device

Programmable Networks

P4 is a high-level language for

programming protocol independent

packet processors designed to

achieve 3 goals.

• Protocol independence.

• Target independence.

• Re-configurability in the field.

Think programming rather than

protocols…

8

What is PISA ?

Programmable

Parser

Programmable

Deparser

Programmable Match-Action Pipeline

Programmer declares the
headers that should be

recognized and their order
in the packet

Programmer defines the
tables and the exact
processing algorithm

Programmer declares
how the output packet

will look on the wire

• Packet is parsed into individual headers.

• Headers and intermediate results are used for matching and actions.

• Headers can be modified, added or removed in match-action processing.

• Packet is deparsed.

9

• Tables are the fundamental unit in the

match-action pipeline

• Each table contains one or more entries
 An entry contains: specific key to match on, single

action, Action data.

Match-Action Processing

SUME
Bandwidth 6.5 Tbps

Processing delay < 1 µs

Bandwidth 4x10 Gbps

Systems use programmable switches

• NetCache [SOSP’ 17]
 On-switch cache for Load Balancing (LB).

• NetChain [NSDI’ 18]

 on-switch KV store for small data.

• DistCache [FAST’ 19]

 multiple racks on-switch cache for LB

• iSwitch [ISCA ’19]

 on-switch aggregation for distributed RL

10

Kinetic Drive  In-Storage Computing

Kinetic Stack

• Active KV storage device

developed by Seagate.

• Accessible by an Ethernet

connection.

• Has CPU and RAM with built-in

LevelDB.

• Handle device to device data

migration through P2P copy

commands.

• Applications communicate with the

drive using the Kinetic Protocol

over the TCP network.

• Simple API (get, put, delete).

Model No. ST4000NK0001

Transfer rate 60 Mbps

Capacity 4 TB

Key size Up to 4 KB

Value size Up to 1 MB

Kinetic Drives Research

• Kinetic Action [ICPADS’ 17]
 Performance evaluation of KD characteristics.

• Data Allocation [BigDataService’ 17]
 4 data allocation approaches for KD.

11

Our Mission

• Improve data access performance for distributed

KV Stores when applications access storage

through network.

• Reduce the amount of data shipped from

storage devices to be processed by the host in

data intensive applications.

• Completed Work
 TurboKV: Scaling Up The performance of

Distributed Key-value stores with In-Switch

Coordination

 Key-value pair allocation strategy for Kinetic

drives.

• Proposed Work
 TransKV: Networking Support for Transaction

Processing in Distributed Key-value Stores.

KV Stores

Storage

Infrastructure

Apps

12

Completed Work (1/2)

TurboKV: Scaling Up the Performance of Distributed Key-value

Stores with In-Switch Coordination[𝟏]

[1] Hebatalla Eldakiky, David H.C. Du, and Eman Ramadan, “TurboKV: Scaling Up the performance of Distributed Key-value Stores with In-Switch

Coordination”, under submission to ACM Transaction on Storage (ToS)

13

Problem Definition

• In distributed Key-value store, data is partitioned between several nodes.

• Partitions management and query routing are managed in three different ways:
Server-driven coordination, Client-driven coordination, and Master-node coordination

Server-driven Coordination

Request sent to

random instanceRe-direct to right

storage node

Reply sent to

the client

1

2

3

× Increase query response time.

 Client doesn’t need to link any code

to the KV store.

Master-node Coordination

Request sent

to master node

1

2

Request directed to

the right instance

Reply sent to the client

3

× Increase query response time.

× Single point of failure.

 Client doesn’t need to link any code

to the kV store.

Client-driven Coordination

Request sent to

target storage node

Reply sent

to the client

1

2

× Periodic pulling of updated directory info.

× client needs to link code related to the

used KV store.

 Decrease query response time.

14

Why Switch-driven Coordination?

• Requests pass by network switches to arrive

at their target.

• Switch-driven Coordination can carry out

 Partitions management

 Query routing

In network switches.
2

hops
 Higher Throughput

 Lower R/W Latency

4

hops

15

• Design in-switch indexing scheme to manage the directory information records.

• Adapt the scheme to the match-action pipeline in the programable switches.

• Utilize switches as a monitoring system for data popularity and storage nodes load.

• Scale up the scheme to multiple racks inside the data center network.

Objectives

Design Issues

Data Partitioning

Data Replication

 Index Table Design

Network Protocol

Key-value Operations Processing

Load Balancing

Failure Handling

Scaling up to the data center networks.

16

TurboKV Overview

Programmable Switches

• Match-action table stores directory information.

• Manages key-based Routing.

• Provide Query statistics reports to controller.

System Controller
• Load balancing between the storage nodes.

• Updating match-action tables with new location of data.

• Handle failures.

Storage Nodes
• Server library to translate TurboKV packet to the used

key-value store.

System Clients
• Client library to construct TurboKV request packets.

17

TurboKV Data plane Design (1/3)

Logical View of TurboKV Data Plane Pipeline
Range Partitioning Hash partitioning

Chain Replication

18

TurboKV Data plane Design (2/3)

On-Switch Index Table

Sub-range Storage Nodes

Sub-range1 𝐼𝑃1, 𝐼𝑃2, 𝐼𝑃3

Sub-range2 𝐼𝑃2, 𝐼𝑃3, 𝐼𝑃4

Sub-range3 𝐼𝑃3, 𝐼𝑃4, 𝐼𝑃1

Sub-range4 𝐼𝑃4, 𝐼𝑃1, 𝐼𝑃2

Network Protocol

19

Key-value Operations Processing

TurboKV Data plane Design (3/3)

PUT (K,value)

GET (K)

RANGE (𝑲𝟏𝟎, 𝑲𝟏𝟎𝟎)

[𝐾80− 𝐾120]

[𝐾31− 𝐾80]

𝐾100 ≤ 𝐾30

Recirculate

Recirculate

Packet out

Packet out

Packet out

𝐾100 ≤ 𝐾80

𝐾100 ≤ 𝐾120

[𝐾1− 𝐾30]

At egress pipeline

20

• Switches count requests directed to each
storage node to estimate the load

• Controller
 pulls monitoring information from switches.

 takes migration decisions.

 updates switches’ match-action tables

 sends data migration commands to storage nodes.

TurboKV Control plane Design

Query Statistics and Load Balancing Storage Failure Handling

• Controller reconfigures the chains of all sub-ranges

on the failed storage node.

 removes the failed storage node from all chains.

 predecessor of failed node will be followed by its successor.

 distributes the data on the failed node in sub-ranges units

among other functional nodes.

 adds new nodes at the end of sub-ranges’ chains.

21

Controller

 keeps track of each index record and its related

records on other switches.

 propagates any record’s update to all affected

switches.

Guarantees consistency between the switches to

reflect any data migration or storage node failures

Scaling Up TurboKV to Data Center Network

• Hierarchical indexing directory.

• Top levels switches maintain aggregate information from its connected switches.

• Bottom level switches (ToR) maintain detailed records of their local storage

nodes.

22

Simulation Results (1/2)

Throughput vs Skewness - Read only Impact of Write Ratio on System Throughput

• TurboKV performs as Ideal C. C. while removing the

management load from the client side.

• TurboKV outperforms S. C. by 33% -- 42%.

• TurboKV outperforms Ideal C. C. in high write ratio workloads.

• TurboKV outperforms S. C. by 30% -- 38% in uniform

workload, and by 14% -- 42% in the skewed workload

23

Simulation Results (2/2)

Key-value operations Latency for uniform Workload

Key-value operations Latency for zipf-1.2 Workload

Avg: 16.3%

99th: 19.2%

Avg: 30%

99th: 49%

Avg: 11%

99th: 12.3%

Avg: 29%

99th: 48%

Avg: 18.3%

99th: 24.7%

Avg: 15.4%

99th: 19%

7 -- 10%

With C. C.

24

Completed Work (2/2)

Key-value Pairs Allocation Strategy for Kinetic Drives[𝟏]

[1] Hebatalla Eldakiky, David H.C. Du, "Key-Value Pairs Allocation Strategy for Kinetic Drives," 2018 IEEE Fourth International Conference on

Big Data Computing Service and Applications (BigDataService), Bamberg, 2018, pp. 17-24, doi: 10.1109/BigDataService.2018.00012

25

Traditional KV Store Communication Model

(1)

The client sends the key to

the storage server.

(2)

The storage server

processes the request and

fetches the data from one of

the connected drives.

All requests sent to

the server (queuing

on the server due to

bandwidth)

(3)

The storage server sends the

data back to the client.

Server Bottleneck → Performance Degradation

26

(3)

The client contacts the drive

with the IP and sends the key

to it.

(2)

The Metadata server sends

the IP of the associated drive

to the client.

Kinetic Drive KV Store Communication Model

(1)

The client sends the key to

the Metadata server.

(4)

The drive processes the

request locally and sends the

data back to the client.

Each KD is a small independent KV storage so we can exploit

Parallelism using multiple KDs to overcome Server Bottleneck

27

Motivation

By taking the advantage of Kinetic drive as being an independent active

device that can carry out all key-value pairs operations on its own.

Why we are different from others?
• deal with data popularity and the limited drive bandwidth which may lead to performance

bottleneck on the drive.

• minimize the number of drives to reduce the cost of building the distributed kinetic-based

Key-value store.

Goal
Building a low cost Kinetic based key-value Store with its indexing table to exploit

parallelism in satisfying user requests and improve the performance of the storage system

28

Problem Definition and Challenges (1/2)

Problem Statement

Allocating data into minimum number of kinetic drives to be accessible by applications

while satisfying the data size and bandwidth requirements.

Challenges

• Each kinetic drive has limited size and limited bandwidth.

 It can only hold certain amount of key-value pairs.

 It can only serve limited number of requests concurrently.

• User requests are not uniformly distributed across all key ranges (hot key ranges,

cold key ranges).

 Hot key: searched by users frequently (high bandwidth requirement).

 Cold key: not searched frequently (low bandwidth requirement).

29

Problem Definition and Challenges (2/2)

• Number of key-value pairs are not uniformly distributed across all key ranges (dense

key ranges, scarce key ranges)

 dense key range: Lots of key-value pairs (high size requirement).

 scarce key range: few key-value pairs (low size requirement).

• Because of the 80/20 rule in data science, we can see that only 20% of data is

accessed 80% of the time and vise versa.

• The metadata server may become a bottleneck point if the searching time for the drive

IP takes long time.

Cold (dense) Key

Range

KD

- Waste drive bandwidth

- Consume drive capacity

Hot (scarce) Key

Range

KD

- Consume drive bandwidth

- Waste drive capacity

30

• Set of kinetic drives, each of size S

and bandwidth B.

• Set of key ranges 𝐾𝑅1, 𝐾𝑅2, … . . , 𝐾𝑅𝑀
each of them has bandwidth

requirement (𝐵𝑖) and size

requirement (𝑆𝑖).

• Each of 𝑆𝑖 and 𝐵𝑖 is a ratio from the

drive size and bandwidth.

Our Approach

KD

Bandwidth = B

Size = S

𝑩𝒊 = …..

𝑺𝒊 = …..

𝐾𝑅𝑖

Min. no. of drives = Max (𝑵𝑩, 𝑵𝑺)
Problem Input

𝑵𝑩 =
σ𝒊=𝟏
𝑴 𝑩𝒊

𝑩
𝑵𝑺 =

σ𝒊=𝟏
𝑴 𝑺𝒊

𝑺

Theoretical

Lower Bounds

• We modeled the problem as the multi-capacity bin

packing problem.

 Each drive represents a bin with multiple capacities (S, B, no. of

KR/drive).

 Each KR represents an item with multiple requirements (size,

bandwidth).

• As being a NP-complete problem, we develop a heuristic

approach to allocate the KR(s) into near-optimal no. of

drives.

 key ranges preprocessing to merge some consecutive ranges.

 Key ranges sorting with weighted sorting function.

 Key ranges allocation with our proposed best candidate criteria.

31

Experimental Results (1/2)

• Using the parameters of the current model of Kinetic drive ST4000NK0001

with storage capacity of 4 TB and transfer rate up to 60 MB/s.

• Testing algorithm under different KV pair sizes.

• Performance Metrics

 the total number of drives used.

 The size of the index table.

• We compare our approach with the theoretical lower bound on number of

drives used and the starting size of index table.

32

Experimental Results (2/2)

• No. of drives is closer to the lower bound when KV size is small.

• Proposed algorithm results aren’t affected by the workload characteristics.

• Our approach achieves reduction in the size of the index table up to 57%.

33

Proposed Project

TransKV: Networking Support for Transaction Processing in

Distributed Key-value Stores

34

Key-value Stores & Transactions

• Key-value Stores are popular for their simple API, unbounded scalability

and predictable low-latency.

• Some applications built on these key-value stores employ non-trivial

concurrent transactions from multiple clients.

Tens of millions requests that result in

over 3 million checkouts in a single day.

Atomicity

Consistency

Isolation

Durability

Correct Database State

Concern with KV Stores

Scalability and Predictable Performance

C 2019, FAST’19 [Doug Terry, Keynote]

Cost

35

State of art Solution (DynamoDB)

Latency

Scale

Get/Put

TransactGetItem

TransactWriteItem

• Group multiple actions together and

submit them as a single all-or-nothing

operation.

 TransactWriteItems.

 TransactGetItems.

Increase Latency

All communications are carried

out through network switches

more forwarding steps

TurboKV TransKV

36

Proposed Solution (TransKV) (1/2)

• Programmable Switch

 Routing requests to target storage nodes.

 Transaction coordinator to decide whether

transaction can be pushed for completion or

aborted in the network.

• System Controller

• Update Cache and indexing information.

• Log management for failure recovery.

• Transaction Coordinator for non-cached

Key-value pairs.

37

Proposed Solution (TransKV) (2/2)

• Timestamp Ordering C. C. in the switches and managed by the controller.

• Each transactional operation is cloned and the switch sends a copy to the

controller for log management and failure recovery.

• Transaction management is based on the hottest key-value pairs cashed in

the switches data plane for space limitation.

• Transactions that span multiple storage nodes with set of operations (read

set, write set).

• Hierarchical caching to scale up for data center network.

Match Action Action Data

Key1 test-tranx-for-processing TS-index = 1, val

Key2 test-tranx-for-processing TS-index = 2, val

Key3 test-tranx-for-processing TS-index = 3, val

Key4 test-tranx-for-processing TS-index = 4, val

Key5 test-tranx-for-processing TS-index = 5, val

38

Conclusion

• Improve data access performance for distributed key-value stores when

applications access storage through network. (In-Network Computing)

• Reduce the amount of data shipped from storage drives to be processed by

the host in data intensive applications. (In-Storage Computing)

• Completed Work

 TurboKV: Scaling Up The performance of Distributed Key-value stores with In- Switch

Coordination (In-Network Computing).

 Key-value pair allocation strategy for Kinetic drives (In-Storage Computing)

• Proposed Work

 TransKV: Networking Support for Transaction Processing in Distributed Key-value Stores

(In-Network Computing)

39

Future Plan

• Design and Implementation of TransKV.

• December, 2020: Dissertation.

• January, 2021: Defense.

40

Thank You

Questions

