
11. Juli 2019 1

One Trillion edges : Graph Processing at Facebook-
Scale

Tong Niu
tong.niu.cn@outlook.com

Tong Niu 2

Outline

• Introduction

• Improvements

• Experiment Results

• Conclusion& Future Work

• Discussion

Tong Niu 3

Introduction

• Graph Structures(entities, connections)
• social networks

• Facebook manages a social graph that is composed of people,
their friendships, subscriptions, likes, posts, and many other
connections.

1.39B active users in 2014
with more than 400B edges

Tong Niu 4

Introduction

• What is Apache Giraph?
• “Think like a vertex”

• Each vertex has an id, a value, a list of adjacent neighbors and
corresponding edge values

• Bulk synchronous processing(BSP)

• Break up to several supersteps(iteration)

• Messages are sent during a superstep from one vertex to another
and then delivered in the following supersteps

Tong Niu 5

Introduction

• What is Apache Giraph?

Tong Niu 6

Introduction

• What is Apache Giraph?

• Master – Application coordinator

• Assigns partitions to workers

• Synchronizes supersteps

• Worker – Computation, messaging

• Load the graph from input splits

• Does the computation/messaging of its assigned partitions

Tong Niu 7

1. Flexible vertex/edge based input

• Original input:

• All data(vertex/edge) need to be read from the same record and
assumed to the same data source

• Modified input:

• Allow loading vertex data and edges from separate sources

• Add an arbitrary number of data sources

Tong Niu 8

2. Parallelization support

• Original:
• Scheduled as a single MapReduce job

• Modified:
• Add more workers per machine

• Use local multithreading to maximize resource utilization

Tong Niu 9

3. Memory optimization

• Original:
• Large memory overhead because of flexibility

• Modified:
• Serialize the edges of every vertex into a bit array rather than using

native direct serialization methods

• Create an OutEdges interface that allow developers to achieve edge
stores

Tong Niu 10

4. Sharded aggregators

• global computation(min/max value)

• provide efficient shared state across workers

• make the values available in the next superstep

Tong Niu 11

4. Sharded aggregators

• Original:
• Use znodes in zookeeper to store partial aggregated data from workers,

master aggregate all of them and write result back to znode for workers
to access it

• every worker has plenty of data that need to be aggregated

• Modified:

 Randomly assigned to one of the workers

 Distribute final values to master/workers

Tong Niu 12

K-Means clustering

In a graph application, input vectors are vertices, and centroids are
aggregators.

Tong Niu 13

1. Worker phases

• Add preApplication() to initialize positions of centroids
• Add preSuperstep() to calculate the new position for each of the

centroids before next superstep

2. Master computation

• Centralized computation prior to every superstep that can communicate with
the workers via aggregators

Tong Niu 14

3. Composable computation

• Allows us to use different message types ,combiners and
computation to build a powerful k-means application

4. Superstep splitting

• For a message heavy superstep
• send a fragment of messages to the destinations and do a

partial computation during each iteration

Tong Niu 15

Experiment results

Tong Niu 16

Experiment results

• Giraph(200 machines) vs Hive(at least 200 machines)
• compare CPU time and elapsed time

• label propagation algorithm

• Weighted PageRank

Tong Niu 17

Conclusion & Future work

 How a processing framework supports Facebook-scale production
workloads. We have described the improvements to Giraph.

1.Determine a good quality graph partitioning prior to our computation.
2.Make our computation more asynchronous to improve convergence
speed.
3.Leverage Giraph as a parallel machine-learning platform

Tong Niu 18

Discussion

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

