
Large scale graph processing systems:
survey and an experimental evaluation

Cluster Computing 2015

Omar Batarfi, Radwa El Shawi, Ayman G. Fayoumi ,
Reza Nouri, Seyed-Mehdi-Reza Beheshti, Ahmed Barnawi, Sherif Sakr

Graph scale

 Scale: millions to billions of nodes and edges
 Facebook social network graph:

 1 billion+ users (nodes)
 140 billion+ friendship relationships (edges)

 The size of a single node/edge can be very different due to the various attributes size or nodes/edges

 An Estimation of large-scale graph size: 1 GB to 500 TB
 ~0.5 GB/million nodes, ~0.20 GB/million edges
 1 million nodes/edges: ~0.5 GB nodes & ~0.20 GB edges
 500 billion nodes/edges: ~250 TB nodes & ~100 TB edges

GB/million nodes GB/million edges

0.42 0.20

0.84 0.13

11.39 2.60

1.83 0.07

0.58 0.23

0.48 0.19

0.44 0.18

platforms

 General-purpose platforms (such as MapReduce) are bad
 No direct support for iterative graph algorithms
 To detect a fix point (termination condition), an extra task might be required on each iteration

 Specialized platforms
 Pregel family
 Graphlab family
 Others

Algorithms

 Characteristics of graph algorithms
 Iterative
 Need to traverse the graph

 Typical graph algorithms
 PageRank: rank nodes based on their incoming/outgoing edges
 Shortest Path: find the path between 2 nodes where the sum of weights is minimal
 Pattern Matching: find certain structures (e.g. path, star)
 Triangle Count: counts the number of triangles
 Connected Component: find the subgraphs in which any two vertices are connected

Pregel family

 Pregel:
 Google’s pioneer work in this area
 Published in 2010

 Distributed & computations are totally in memory

 Iteration -> superstep
 Address scalability issue

 Bulk Synchronous Parallel (BSP): synchronization barrier on each superstep
 Message passing interface (MPI)

 Vertex-centric approach
 Locality: Each vertex & its neighbors are in the same node
 A vertex can: execute a function/send messages to others/change states (active/inactive)
 Termination: no active vertices & no messages being transmitted

 Pregel family
 Apache Giraph: Java implementation of pregel
 GPS: another Java implementation
 Pregelix: set-oriented, iterative dataflow

GraphLab family

 GraphLab
 Shared memory

 GAS (Gather, Apply, Scatter) processing model
 Gather: a vertex collects info of its neighbors
 Apply: performs computation
 Scatter: update adjacent vertices and edges

 Comparison
 GAS : pull-based; a vertex request info of all neighbors
 MPI: push-base; a vertex receives info from neighbors

 Two modes:
 Synchronous model (BSP): communication barriers
 Asynchronous model: using distributed locking; no communication barriers orsuperstep

 GraphLab family
 PowerGraph: avoid the imbalanced workload caused by high degree vertices in power-law graphs
 Trinity: memory-based; distributed
 Signal/Collect: vertex-centric; two operations for a vertex (signal/collect)
 Graphchi

GraphLab family cont’d

 Graphchi:
 Out-of-core: using secondary storage in a single machine
 Parallel Sliding Window (PSW):

 Goal: decreases non-sequential accesses on disk
 It partitions the graph into shards
 In each shard, edges are sorted by the source IDs

 Selective scheduling:
 Converge faster on some parts of the graph
 “some parts” -> the change on values is significant

 Pros
 It avoids the challenge of finding efficient graph cuts

 Now with zone-based devices, partitioning is needed again
 It avoids cluster management, fault tolerance etc.

 Out-of-Core + SMR

Other systems

 TurboGraph
 Out-of-core
 Processing billion-scale graphs using modern hardware -> parallelism

 Multicore CPU: multiple job at the same time
 FlashSSD: multiple I/O requests in parallel using multiple flash memory packages

 A parallel model called pin-and-slide: column view of the matrix-vector multiplication
 Two types of thread pools

 Execution thread pool
 Asynchronous I/O callback thread pool

 Steps
 Restrict computation to a set of vertice -> identify the corresponding pages
 -> pin those pages in the buffer pool
 -> processing completes for a page -> swtich unpinned -> can be evicted now
 -> Parallel asynchronous I/O request to the FlashSSD for pages which are not in the buffer pool

 The system can slide the processing window one page at a time

 Multiple channel SSD
 Extreme-large-scale graph that does fit into memory
 CMR -> SMR/Zone named SSD

Other systems

 GRACE
 Out-of-core
 Batch-style graph programming frameworks
 Providing a high level representation for graph data

 Separating application logic from execution policies.
 Combine synchronous programming with asynchronous execution

Experiments

 Perforamance metrics
 Reading Time, Processing Time, Writing Time, Total Execution Time, CPU Utilization, RAM Usage, Network Traffic

 Deployed on Amazon AWS cloud services

The execution times metrics for the PrageRank algorithm for all systems using the different datasets

