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With the rapid increase in the amount of data produced and the development of new types of storage devices,

storage tiering continues to be a popular way to achieve a good tradeoff between performance and cost-

effectiveness. In a basic two-tier storage system, a storage tier with higher performance and typically higher

cost (the fast tier) is used to store frequently-accessed (active) data while a large amount of less-active data are

stored in the lower-performance and low-cost tier (the slow tier). Data are migrated between these two tiers

according to their activity. In this article, we propose a Tier-aware Data Deduplication-based File System,

called TDDFS, which can operate efficiently on top of a two-tier storage environment.

Specifically, to achieve better performance, nearly all file operations are performed in the fast tier. To

achieve higher cost-effectiveness, files are migrated from the fast tier to the slow tier if they are no longer

active, and this migration is done with data deduplication. The distinctiveness of our design is that it maintains

the non-redundant (unique) chunks produced by data deduplication in both tiers if possible. When a file is

reloaded (called a reloaded file) from the slow tier to the fast tier, if some data chunks of the file already exist in

the fast tier, then the data migration of these chunks from the slow tier can be avoided. Our evaluation shows

that TDDFS achieves close to the best overall performance among various file-tiering designs for two-tier

storage systems.
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1 INTRODUCTION

According to International Data Corporation (IDC), more than 22 zettabytes (billion terabytes) of

various storage media will need to be shipped between 2018 and 2025 to meet world data stor-

age demands [1]. The amount of data created by social media, e-business, and other large-scale
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IT systems continues to grow exponentially [2]. This growth will cause the scale of some future

file systems to become extremely large with billions of files stored in a single system. Several file

systems such as GPFS [3], ZFS [4], HDFS [5], and Ceph [6] are already designed to satisfy this

extremely large-scale storage requirement. Usually, except for a small number of active files that

are used very frequently, most files are not re-accessed for a long period of time after they are

first written [7]. Keeping all files, even infrequently accessed ones, in high-performance storage

negatively impacts the overall cost-effectiveness of the storage system [8]. Thus, we are looking

for approaches to improve the file system performance while reducing the total storage cost of

large-scale file systems.

In recent years, different types of storage devices have been developed such as Non-Volatile

Memory (NVM), Solid State Drives (SSD), and hard drives that use Shingled Magnetic Recording

(SMR). These devices are used to construct different storage tiers with distinct performance char-

acteristics. Typically, in a two-tier storage system, the fast tier has higher performance, higher

cost, and smaller capacity while the slow tier has lower performance, lower cost, but bigger ca-

pacity [9]. The fast tier is used for storing active, or hot, data blocks while the slow tier is used to

store less-active, or cold, blocks. Due to dynamic changes in data activity, data blocks are migrated

between the two tiers to make more data accesses occur in the fast tier while most inactive files

are stored in the slow tier. Therefore, the performance of the whole system can be close to that of

the fast tier, but its cost-effectiveness can be close to that of the slow tier.

To manage storage tiers at the file system level and to achieve a good tradeoff between perfor-

mance and cost-effectiveness, we propose a Two-tier aware Data Deduplication-based File System

called TDDFS. TDDFS allocates and migrates files between the two tiers. TDDFS conducts file-

based activity evaluation and manages file-based migrations efficiently and accurately. Files are

always accessed from the fast tier as in a regular file system to achieve high performance. An ac-

cess to a file in the slow tier triggers the file to be migrated to the fast tier. TDDFS also deduplicates

the files that are going to be migrated from the fast tier to the slow tier. Since data deduplication

identifies redundant data and replaces it with corresponding metadata, TDDFS reduces the amount

of data being migrated to the slow tier and improves its space utilization.

TDDFS creates and operates on new files in the fast tier the same as files in file systems with-

out deduplication to gain the best performance. After a period of time, some less-active files are

migrated to the slow tier. These files are deduplicated with a Content Defined Chunking (CDC)

process, while their file metadata are still maintained in the fast tier. If a file (deduplicated) in the

slow tier is requested by a file open, then the file will be migrated back to the fast tier. We have

designed special ways of handling the files to be migrated from the fast tier to the slow tier or vice

versa. To reduce the amount of data to be migrated from the slow tier to the fast tier, TDDFS does

not assemble the file back to its original state; instead, it keeps the structure of the data chunks

generated by data deduplication. That is, the file recipe created during the deduplication is used

to index the data chunks in the fast tier. Therefore, data chunks that already exist in the fast tier

do not need to be migrated. In this way, the amount of data to be migrated from the slow tier to

the fast tier is reduced. To further reduce the data to be migrated from the fast tier to the slow tier,

TDDFS keeps track of whether an existing data chunk in the fast tier has been modified. If a data

chunk is not modified and a copy of the chunk exists in the slow tier, then it does not need to be

migrated from the fast tier back to the slow tier. Consequently, the amount of data to be migrated

between the two tiers is reduced by 80% to 90% compared with the design without deduplication

or the design that only applies deduplication to the slow tier.

This article describes the design, prototype implementation, and evaluation of TDDFS. We im-

plemented TDDFS based on FUSE and compared it with other file system level tiering designs

such as AllDedup (all files in both tiers are deduplicated) and NoDedup (no files in either tier are
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deduplicated). The evaluation results show that the overall performance of the proposed system is

close to that of a comparable file system with the NoDedup tiering design, and its cost-effectiveness

is close to that of the AllDedup design. This means TDDFS achieves close to the best overall per-

formance and cost-effectiveness among various file-tiering designs for a two-tier storage system.

For example, as shown in Section 5, the throughput of TDDFS can be close to or even better than

that of NoDedup, and the per-GB cost of TDDFS is only about 2% higher than that of AllDedup.

Our key contributions include:

• By keeping deduplicated unique data chunks in both tiers and creating new files as regu-

lar files in the fast tier, TDDFS simultaneously achieves high performance and high cost-

effectiveness.

• When a file is migrated from the slow tier to the fast tier, if some of the data chunks of

the file already exist in the fast tier, then these chunks will not be migrated. Thus, TDDFS

reduces the transfer costs of migrating data between the slow tier and the fast tier.

• Data chunks are shared among reloaded files in the fast tier. Consequently, TDDFS achieves

a good space saving in the fast tier (no duplicate data chunks) with only a small read/write

performance penalty.

• TDDFS improves the deduplication performance and migration efficiency. This is because

the unmodified data chunks of the reloaded files in the fast tier do not need to be dedupli-

cated, and these chunks will not be migrated to the slow tier if they already exist in the slow

tier.

The rest of the article is arranged as follows: We discuss both background and challenges in

Section 2. Section 3 presents the proposed system design and architecture in detail, and our pro-

totype implementation is described in Section 4. We evaluate and analyze the performance of our

approaches in Section 5. The related work is reviewed in Section 6. Finally, we conclude our work

in Section 7.

2 BACKGROUND AND CHALLENGES

In this section, we first briefly discuss tiered storage, file activity, and file access locality. Then, the

challenges of integrating data deduplication with file migration are discussed.

2.1 Tiered Storage

Some of the tiered storage products are managed at the block level [10–13]. Typically, a tiered

storage system uses either flash-based storage drives or high-performance hard disk drives as a

fast tier and uses either low-performance hard disk drives or tape drives as a slow tier [10–13].

The migration granularity in a tiered storage system is a data chunk with the size varying from

4KB to 1GB or even larger [11–13]. A smaller chunk size is usually more accurate and efficient for

selecting data chunks to be migrated, but its maintenance cost is higher, and it may cause more

data fragmentation. A larger chunk size reduces the management overhead; however, the data

migration efficiency and accuracy are relatively low.

Deploying file systems on top of a block-based tiered storage system is a straightforward ap-

proach to achieve good cost-effectiveness. As the number of files continuously increases, their

corresponding data volume will go beyond the capacity of the fast tier. Therefore, a number of

files have to be migrated from the fast tier and stored in the slow tier. In this case, data migration

is completely managed by the block-based tiered storage system [9, 14, 15]. The physical location

of a file is transparent to the file system, and existing file systems and applications can be directly

used in a tiered storage environment without any changes.
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When deploying a file system on top of a tiered storage system, some potential issues still need

to be considered. First, since data activity measurements and data migration are chunk based, the

need to migrate one file may cause the whole data chunk to be migrated. This would consume

more storage I/O bandwidth of the two tiers than necessary. Similarly, a small but active file may

prevent a big data chunk from being migrated to the slow tier. This would mean that the valuable

space of the fast tier is not economically used. Second, a file system may easily collect certain infor-

mation like file access patterns, file activity, and file boundaries that can benefit data allocation and

migration between different tiers. However, the collected file system information cannot be easily

passed to the block level and used by the tiered storage management system, though there are

existing efforts focusing on passing high-level hints to low-level storage layers [16, 17]. Therefore,

moving the migration management logic up to the file system level can potentially solve some of

the aforementioned issues and make the management more efficient and accurate. Third, some file

system–related data like file metadata, which is small but latency sensitive, should not be migrated

to the slow tier if space is adequate. A tiered storage system, without knowing the semantics of the

data, may migrate the file metadata to the slow tier if the data chunk that contains the metadata

has not been used for a long time. This will cause higher latency when the file is accessed later

and for other file system operations that depend on the metadata (e.g., the ls command used to list

directory contents).

Although file systems that can manage multiple storage tiers have been developed such as GPFS

[18], ReFS [19], and Oracle HSM [20], determining policies that allow a file system to manage

multiple storage tiers with good tradeoffs between performance and cost remains challenging.

Deduplication adds another tradeoff. By deduplicating the files that are migrated to the slow tier,

migration cost is reduced and the space utilization of the slow tier is improved. However, data

deduplication brings a performance penalty, especially when applications are accessing the dedu-

plicated files. Thus, the challenges of integrating data deduplication with file migration need to be

carefully addressed. In this article, we combine the management of tiered storage at the file level

with data deduplication and address the associated challenges.

2.2 File Activity and Access Locality

To better understand file activity and access locality, researchers have measured and analyzed

file system workloads. Most of these studies have similar findings on file activity and file access

patterns [7, 21, 22]. Leung et al. [7] collected 3 months of file system workload traces from NetApp’s

data center used by more than 1,500 employees. They discovered that more than 90% of the over

22TB of active storage was untouched over the 3-month period. Of the files accessed, 65% were

only opened once and 94% were accessed fewer than 5 times. Meyer et al. [23] collected file system

traces from 857 desktop computers at Microsoft and focused on file modifications and file writes.

Analysis of the month-long file traces showed that less than 10% of files were modified within the

last 10 days and more than 80% of files were not modified within the last month. From these studies,

it is easy to conclude that in large-scale file systems most files are less active and infrequently

accessed. It also implies that these files can be migrated to the slow tier to reduce hardware costs

if the tiered designs are used.

Leung et al. [7] also found that more than 60% of file re-opens occurred within 1 minute of these

files being closed. This result indicates that a file may be opened and closed a couple of times within

a short period. Thus, it is reasonable to migrate files from the slow tier to the fast tier to achieve

better performance when the files are accessed. In addition, file operations display spatial locality.

Based on the traces, Leung et al. concluded that about 21% of file operations accessed file data

(reads or writes) while about 50% were strictly metadata operations. Thus, in a two-tier storage
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system, storing the metadata of hot files, or even all of the metadata if possible, in the fast tier can

improve the overall performance. In general, all metadata plus the frequently accessed files are

still a small portion of the total data in a file system. Therefore, storing these data in the fast tier

can achieve good performance and high efficiency if the capacity of the fast tier is large enough. In

another study, Roselli et al. [22] found that files tend to be either read-mostly or write-mostly, and

the total number of file reads tends to be several times more than the total number of file writes.

The proposed design of TDDFS incorporates these findings into tradeoffs between performance

and cost-effectiveness for reads and writes.

2.3 Deduplication and Challenges of Integrating Deduplication with Migration

Data deduplication is a popular feature in many storage software products. By identifying and

only storing unique data chunks, data deduplication considerably reduces the space required to

store a large volume of data [24]. Data deduplication is broadly classified into two categories: pri-

mary data deduplication and secondary data deduplication. Primary deduplication usually refers

to deduplicating primary workloads, and secondary deduplication refers to using deduplication in

backup or archival systems [25].

Both primary data deduplication and secondary data deduplication have similar processing op-

erations [26, 27]. Typically, the data to be deduplicated forms a byte stream and is segmented into

multiple data chunks according to a chunking algorithm. Fixed-size chunking and CDC are two

major types of chunking algorithms [28]. The former has a higher throughput, while the latter

can achieve a better deduplication ratio (i.e., the original data size divided by the data size after

deduplication, which is always ≥1). A chunk ID based on the fingerprint of the data chunk content

is calculated by a cryptographic hash function (e.g., MD5, SHA-1, or SHA-256). Once a chunk is

determined, the deduplication system searches for the chunk ID in the indexing table (i.e., the col-

lection of all existing chunk IDs). If the chunk ID already exists, then the data chunk is a duplicate

and it will not be written to the storage again. If the chunk ID is new (does not exist), then the

data chunk is unique and will be stored. Then, a new indexing entry that maps this chunk ID to

the physical location of the chunk will be created and added to the indexing table. Other map-

ping metadata (i.e., a file recipe) are created to map all data chunks (redundant or unique) to their

stored locations in the same sequence as they were in the original byte stream such that it can be

reconstructed in the future.

Although integrating data deduplication with file migration can improve the slow tier space

utilization and potentially reduce migration cost, it also brings some performance issues such as

high compute and memory resource utilization, high latency, and low throughput [29–31]. The

chunking process, chunk ID generation, and chunk ID searches in the indexing table are time-

consuming. Thus, data deduplication increases the I/O latency and impacts the throughput [32–

34]. Caching a large portion of the indexing table in memory can increase the chunk ID search

speed, but the memory space available for the file system or other applications will be reduced,

which may further degrade the overall performance. To address these challenges, TDDFS does not

deduplicate the files that are newly created in the file system. The performance overhead caused

by data deduplication can be avoided when these files are read or written. Also, TDDFS does not

assemble the reloaded files (i.e., deduplicated files to be migrated from the slow tier to the fast

tier) back to their original state in the fast tier. This avoids creating a file with many duplicate

data chunks, since some data chunks may already exist in the fast tier. By tracking the updates to

data chunks of a file in the fast tier, extra deduplication can be avoided if the data chunks are not

modified. These concepts are discussed in more detail in Section 3.
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Fig. 1. Overview of TDDFS architecture.

3 SYSTEM ARCHITECTURE AND DESIGN

In this section, we first overview the architecture and important modules of TDDFS including the

File System Layer (FSL), File Migration Manager (FMM), Deduplication/Restore Manager (DRM),

and Reloaded File Manager (RFM). Then, four important and unique features of TDDFS are de-

scribed. Finally, several major data operations are discussed. This description of TDDFS is intended

to show the design principles of our proposed approach.

3.1 Architecture Overview

An overview of the TDDFS architecture is shown in Figure 1. The FSL provides a generic interface

identical to that of a typical file system, so upper-layer applications can use TDDFS without any

modifications. The FSL allows applications to directly read files from and write files to the fast tier

until the files are migrated to the slow tier. Since all metadata are stored in the fast tier, the FSL

processes all metadata requests directly on the fast tier. The FMM collects file information from

the FSL to evaluate the file activity and manage the migration process between the two tiers.

In addition to the FMM, two other modules, the RFM and DRM, cooperate to support the major

operations of TDDFS. When file migration starts, the FMM selects the file migration candidates

and, if these files are newly created, tells the DRM to read the candidate files from the fast tier as

a byte stream and deduplicate them. After the files are successfully deduplicated and stored in the

slow tier, their data are deleted from the fast tier. The file recipe that is used for future file restore

and read/write operations is stored in the fast tier as part of the file metadata. If a deduplicated file

in the slow tier is requested by a file open call from an application, then the FSL tells the FMM to

migrate the file from the slow tier to the fast tier (this action is called a reload). During this process,

the DRM identifies, reads, and then writes the required unique data chunks from the slow tier to

the fast tier. Note that some of the unique data chunks may already exist in the fast tier. These

data chunks will not be reloaded. A unique feature of TDDFS is that the reloaded file references its

data through an index of the unique data chunks in the fast tier. These data chunks may be shared

by the same file or different reloaded files. Note that read or write requests may happen during

a file reloading process, and TDDFS is able to process the read and write requests concurrently

with file reloading. Another optimization is that when a reloaded file is selected to be migrated

from the fast tier to the slow tier again, unmodified data chunks do not need to go through the

deduplication process. Only modified data chunks of a previously reloaded file that is now moving

to the slow tier will be deduplicated by the DRM. File migration and reloading are transparent to

the applications.
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Fig. 2. An example of file states and data layout of TDDFS.

Based on the file’s location and state, files in TDDFS are classified into three categories:

• Newly created files: These are files newly created in the fast tier. Their metadata and data

are the same as files in a typical file system. Since there is no additional operation needed

for newly created files, their performance is similar to files in a typical file system deployed

on the fast tier.

• Deduplicated files: These are files migrated from the fast tier to the slow tier that went

through the deduplication process against the unique chunks already stored in the slow

tier. Their metadata are stored in the fast tier; however, their unique data chunks are stored

in the slow tier without duplicates. TDDFS creates a file recipe for each file as part of the

metadata, and the file recipe is used to access unique data chunks of this file in the slow tier.

• Reloaded files: These are files reloaded back from the slow tier to the fast tier. During

the reloading, only unique data chunks that do not exist in the fast tier are reloaded back

to the fast tier. Some data chunks in the fast tier are referenced by only one reloaded file,

while others are referenced several times by one file or concurrently referenced by multiple

reloaded files. After reloading, the file recipe is updated with data chunk addresses located

in the fast tier.

One example of different file states and their data layout in TDDFS is shown in Figure 2. In the

figure, log1 and log1_new are newly created files, and log1_new is a new version of log1 with

newly appended content. DCV1, DCV2, and Centos are reloaded files. DCV1 and DCV2 are the data

volumes of Docker containers. Chunk C2 and C14 are shared by the reloaded files. Ubuntu/12.04
and Ubuntu/14.04 are deduplicated files. Since log1_new is a newly created file, its data content,

indicated as three chunks, C1-C16-C3, is stored in the fast tier in a logically consecutive space and

managed as a regular file. Note that C1, C16, and C3 are the data chunks that will be partitioned by

deduplication in the future, and C3 is the newly appended content based on log1. When TDDFS

decides to migrate the newly created file log1 (which has content indicated by two chunks, C1-

C16) from the fast tier to the slow tier, the FMM reads the file data and passes it to the DRM.

The DRM partitions the file into two data chunks, C1 and C16. Because C1 already exists in the

slow tier, only C16 will be migrated and written to the slow tier. This saves I/O bandwidth and

improves space utilization of the slow tier. Ubuntu/12.04 and Ubuntu/14.04 are deduplicated

files and have two identical data chunks, C1 and C14, in both files. However, only one copy of C1
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and C14 is stored in the slow tier. If Ubuntu/14.04 (consisting of data chunks C1, C13, and C14)

is reloaded back to the fast tier, then only one data chunk, C1, needs to be reloaded to the fast tier.

This is because C13 and C14 are parts of the reloaded file Centos, and they are already in the fast

tier. This type of optimization reduces the I/O loads of both the fast tier and slow tier.

Given the above overview, the following four subsections present four features that make

TDDFS special and achieve better tradeoffs between performance and cost-effectiveness.

3.2 File Migration Selection

As more newly created files and reloaded files are accumulated in the fast tier, the free space in the

fast tier eventually becomes lower than a given threshold. At this point, some less-active files need

to be migrated to the slow tier to reclaim space for more newly created or reloaded files. As dis-

cussed in Section 2.2, most files in a file system are less active, and they will not be re-accessed for

a long period of time. Therefore, migrating these files to the slow tier can potentially improve the

overall performance of the file system. To ensure the performance of primary workloads, migra-

tion can be done during the off-peak time. Dedicated evaluations of file activity and file selection

policies can be further exploited for file migration in TDDFS. However, this is not the focus of this

article. Here, TDDFS is simply based on the file access recency to select file migration candidates.

More aggressive or efficient policies will be explored in our future work.

For selecting migration candidates, the least recently used files are identified by the FMM and

migrated to the slow tier until the free space of the fast tier is higher than a pre-determined thresh-

old. To speed up the deduplication process of migration, files that are smaller than a maximal chunk

size (e.g., 16KB) will not be chunked. In this case, the whole file is treated as a single chunk and

stored in the slow tier if it is unique. If these small files only occupy a small portion of the fast

tier space and there is little probability of finding their duplicates in the slow tier, then migrating

and deduplicating these files has little performance and space benefit. Therefore, to further reduce

the migration cost, if the cumulative total size of these small files is smaller than a pre-determined

threshold (e.g., 5% of the fast tier’s capacity), then these small files will not be selected as migration

candidates.

3.3 Integrating Deduplication with File Migration

When migrating a newly created file through deduplication, a file recipe is created and added to

the file metadata to reference the data chunks of this file. File recipes will be used when reloading

deduplicated files to the fast tier, reading/writing reloaded files, and deduplicating reloaded files.

Each metadata entry corresponding to a data chunk in the file recipe stores the following informa-

tion: (Chunk ID, Chunk Size, Chunk Address, Restore Flag, and Modification Flag). Chunk ID is used

to find the corresponding Key-Value Pair (KV-pair) in the deduplication indexing table. In TDDFS,

we use the hash value of the chunk as the Chunk ID, and this value is related to the cryptographic

hash function being used. A unique data chunk may exist in both the fast tier and the slow tier.

If the unique chunk is referenced by a deduplicated file, then the Chunk Address of this chunk in

the file recipe points to the chunk location in the slow tier. If the unique chunk is referenced by a

reloaded file, then the Chunk Address in the file recipe points to the chunk location in the fast tier.

A Restore Flag (RF) in the metadata entry is used to indicate whether this chunk has been restored

to the fast tier. The RFs of deduplicated files are 0. After a data chunk of the deduplicated file is

migrated to the fast tier, the RF of this chunk in the metadata entry is set to 1. One bit is used for

the Modification Flag (MF) in the metadata entry of a data chunk in the file recipe. When a file is

reloaded from the slow tier to the fast tier, the MFs of metadata entries of these migrated chunks

are set to 0. During the file’s lifetime in the fast tier, if one of its chunks is modified, a copy of

the modified chunk is created in the fast tier. At the same time, in the metadata entry of this new
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Table 1. KV-pair Structure

Key Value

Chunk ID

Chunk fast tier address: P1

Chunk fast tier reference count: C1

Chunk slow tier address: P2

Chunk slow tier reference count: C2

Chunk size: L

Status: S

chunk, the Chunk ID is cleaned and cannot be used to identify the original chunk. The Chunk Size

and the Chunk Address will be changed accordingly to reference the new data chunk, and the MF

of this chunk is set to 1.

In the indexing table, each unique chunk’s indexing information is managed as one KV-pair as

shown in Table 1. The chunk ID is used as the key, and other information is stored as the value.

We use 8-byte unsigned integers to store the addresses and reference counts and 4-byte unsigned

integers to store the size and status. The size of a KV-pair is 24 bytes plus the chunk ID size. For

one KV-pair, unlike existing deduplication systems, we use two address pointers (one for the fast

tier address and another for the slow tier address) and two reference counts (fast tier reference

count and slow tier reference count) to indicate the chunk location and its usage in the fast tier

and the slow tier. The fast tier (or slow tier) reference count indicates how many times the chunk

appears in that tier’s files. If the reference count of the chunk is 0, then it will be deleted in the

corresponding tier during garbage collection. We use the Status to indicate the storing status of the

chunk in both tiers: existing in the fast tier only, existing in the slow tier only, or existing in both

tiers. After garbage collection is applied in the fast tier or the slow tier, the Status of the deleted

chunks is updated for corresponding KV-pairs.

When a newly created file is selected to be migrated to the slow tier, the file content is first read

as a byte stream and segmented into multiple data chunks via a CDC scheme. Then, the fingerprint

of each chunk is generated using a cryptographic hash function (e.g., MD5, SHA-1, or SHA-256),

and the fingerprint is used as its chunk ID. Each chunk ID is searched in the deduplication indexing

table. If the data chunk cannot be found in either the fast tier or the slow tier, then this chunk is

new to the system and the data chunk will be written to the slow tier. A new KV-pair representing

this new chunk is created and inserted into the indexing table. The slow tier reference count in

the new KV-pair is set to 1, and the data chunk location in the slow tier is stored in its slow tier

address. If the data chunk exists in the fast tier but it does not have a copy in the slow tier, then

we need to store a copy of this chunk in the slow tier. At the same time, the slow tier reference

count in the KV-pair of this chunk is set to 1, and the data chunk location in the slow tier is stored

in its chunk slow tier address. If the data chunk already exists in the slow tier, then the data of the

chunk will not be stored. The slow tier reference count in the KV-pair of this chunk increases by

1. After the KV-pair of the data chunk is created or updated accordingly, a new metadata entry of

the chunk is created and appended to its file recipe. Finally, after the whole file is processed, the

metadata of the file is updated and the file is labeled as a deduplicated file. After that, the content

of the file in the fast tier is deleted.

If any failure happens during the migration, then the process will restart from the beginning.

If all newly created files are migrated to the slow tier and there are no other newly created files

being created, then the whole fast tier space is occupied by reloaded files. In this extreme situation,

the performance of TDDFS is close to that of the AllDedup design. The size of the file recipe is

about 0.5% to 1% of the entire file size if we use 8KB as the average chunk size. If the size of the
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deduplicated files is very large, then the total size of the corresponding file recipes can occupy a

large portion of the fast tier. In this situation, there will be less space for reloaded files and newly

created files, which can cause a performance penalty. To handle this case, a threshold is set for the

cumulative total size of all the file recipes in the fast tier (e.g., 10% of the fast tier’s space). If the

total size of the file recipes is higher than the threshold, then some of the least recently used file

recipes will be migrated to the slow tier.

When a reloaded file is selected to be migrated from the fast tier to the slow tier, TDDFS sequen-

tially processes the metadata entries in the file recipe of the file. For each metadata entry, TDDFS

first checks the value of MF. For an unmodified chunk (MF is 0), we use its chunk ID to fetch the cor-

responding KV-pair from the indexing table. If the slow tier reference count is >0, then the chunk

has a copy in the slow tier. Its Chunk Address in the recipe is directly changed from the chunk fast

tier address to the chunk slow tier address. Thus, there are no data being read from the fast tier

and written to the slow tier. If the slow tier reference count in its KV-pair is 0 and the data chunk

has already been garbage-collected in the slow tier according to its Status value, then a copy of the

chunk is written to the slow tier and the chunk location is stored in its slow tier address in the KV-

pair. Then, the Chunk Address in the recipe is updated with the slow tier address. In both cases, the

chunk fast tier reference count decreases by 1, and its slow tier reference count increases by 1 in its

KV-pair. If the MF is 1 (i.e., the chunk has been modified during its lifetime in the fast tier), then the

chunk will go through the same deduplication process as newly created files. Usually, one write will

change multiple consecutive data chunks. Thus, the consecutively modified chunks will be dedupli-

cated together to improve efficiency. New data chunks might be generated during the deduplication

process of the modified chunks. Therefore, the whole file recipe will be rewritten with the updated

metadata entries and newly generated metadata entries. After the data chunk is deduplicated, its

RF and MF are both set to 0 in its metadata entry. Finally, the migration process of a reloaded file

from the fast tier to the slow tier is completed, and the file is labeled as a deduplicated file. Files

are exclusively locked from write requests during the deduplication process to maintain their con-

sistency. To ensure data reliability and consistency, file recipe changes in memory are frequently

synchronized with the copy in the fast tier (e.g., every 500ms). If a system failure happens before

the most current synchronization, then the file will roll back to the state of the last synchronization.

Each unique data chunk is represented by a KV-pair in a Key-Value Store (KVS), which is used as

the deduplication indexing table. Each data chunk related operation will trigger reads or updates

of the corresponding KV-pair. If the data chunk is garbage collected in both tiers, then the corre-

sponding KV-pair will be deleted. Since the KV-pairs are very frequently searched and updated, a

high-performance flash-adaptive KVS is needed in TDDFS. The KVS design and implementation

are not the research focus of this article, and existing flash-adaptive KVS designs such as Bloom-

Store [35], ChunkStash [36], and RocksDB [37] can be used in TDDFS as the indexing table. As

the total amount of data in TDDFS increases, the indexing table itself can grow to a large size. If

we use a SHA-1 hash as the chunk ID, then one KV-pair is 44 bytes. If we use 8KB as the average

chunk size, then the KVS size is about 0.5% of the total stored data size. How to design and imple-

ment a high-performance and low-storage-overhead indexing table that can store a large amount

of KV-pairs can be an interesting and important research work in the future. In our prototype, we

use BloomStore for the KVS as discussed in detail in Section 4.2.

3.4 Non-Redundant Chunk Reloading

When a deduplicated file is opened, the request will trigger the whole file to be reloaded from the

slow tier back to the fast tier. In most primary or secondary deduplication systems, the file restor-

ing or reloading process assembles the whole file back to its original state (i.e., one consecutive

file). Thus, it requires all the data chunks of the file to be read from the slow tier and written to the
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fast tier. If the reloaded file is later migrated to the slow tier again, then the whole file will be dedu-

plicated the same way as a newly created file, even if it has not been modified or was only partially

modified. By having no extra indexing structure to track the updates to the file and no maintaining

data chunk information in the file recipe, previously obtained deduplication information cannot

benefit the migration process.

In contrast, TDDFS applies non-redundant chunk reloading so reloaded files can maintain a

similar kind of chunk-level sharing in the fast tier as deduplicated files do in the slow tier. During

file reloading, only the relevant chunks that are not in the fast tier are read from the slow tier

and written to the fast tier. The performance of the whole system can benefit from non-redundant

chunk reloading. One benefit is that the amount of data to be migrated is reduced, since some data

chunks that already exist in the fast tier do not need to be migrated. In addition, space is saved in

the fast tier due to the data chunk sharing among reloaded files.

The process of migrating deduplicated files from the slow tier to the fast tier and transforming

these files to reloaded files is described by the following steps. (1) The DRM reads the file recipe

from the fast tier via the RFM. (2) The DRM examines the metadata entry of each chunk and finds

the corresponding KV-pair in the indexing table. (3) If the fast tier reference count of the data

chunk is 0, which means the chunk currently does not exist in the fast tier, then TDDFS reads the

chunk from the slow tier and then writes it to the fast tier with help from the RFM. After this, the

fast tier chunk address in the metadata entry of the chunk is updated accordingly by the RFM.

The DRM updates the fast tier reference count to 1 and reduces the slow tier reference count by

1 in the corresponding index table KV-pair entry. (4) If the chunk’s fast tier reference count is

greater than 0, which means the chunk already exists in the fast tier, then its fast tier reference

count in the KV-pair entry increases by 1, its slow tier reference count decreases by 1, and the fast

tier address in the metadata entry of the chunk is updated to its current fast tier address. (5) The

RF and MF are set to 0 in its metadata entry. (6) Steps (2) to (5) are repeated until the whole file

recipe is processed. Finally, the file state is changed from deduplicated file to reloaded file.

Usually, flash-based SSD technology is used for the fast tier, and this raises concerns about the

wear-out problem. Non-redundant chunk reloading can reduce the amount of data written to the

fast tier, which can potentially expand the lifetime of the SSD storage. According to Leung et al.

[7], if a file is accessed, then it will probably be re-accessed frequently within a short period of

time. Therefore, by reloading accessed deduplicated files from the slow tier to the fast tier, the

file system’s overall performance will be much better than if these files are kept in the slow tier

without reloading. However, it may potentially be wasteful to reload all data of a large file to the

fast tier if the file is only partially accessed. With additional information from the FSL or upper-

layer applications, there could be a more efficient way to load a portion of the file to the fast tier.

Since designing partial file reloading is not the main focus of TDDFS, we reload whole files from

the slow tier to the fast tier when they are accessed to simplify the implementation.

3.5 Shared Chunk Management

Since some of the data chunks in the fast tier are shared among reloaded files, the file read and write

operations should be carefully handled to ensure the data correctness, persistence, and consistency.

TDDFS relies on the RFM to cooperate with the FSL to achieve the shared chunk management.

Here, we describe how the read and write requests to a reloaded file are processed by TDDFS.

Several steps are needed to finish a write request. When a write request comes, according to

the offset in the file and requested data size, the RFM locates the corresponding data chunks by

checking the file recipe. First, for each chunk, the corresponding chunk KV-pair in the indexing

table is examined by the DRM. If the chunk fast tier reference count is 1 and the chunk slow tier

reference count is 0, which means the data chunk is uniquely used by this file, then the original
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Fig. 3. An example of reloaded file shared chunk updating.

chunk in the fast tier can be directly updated. A new KV-pair for the updated chunk is created, and

the old KV-pair of this chunk is deleted in the indexing table if this chunk is garbage collected in

both tiers. If the chunk is shared by other reloaded files (fast tier reference count >1) or the chunk is

used by some deduplicated files in the slow tier (slow tier reference count ≥1), then TDDFS applies

Copy on Write (CoW) to create a new data chunk with the updated content. The Chunk Address in

the metadata entry points to the new data chunk, and the MF is set to 1. At the same time, the fast

tier reference count of the original chunk decreases by 1 in its KV-pair. Future updates to this new

data chunk can be directly applied without changes to the metadata entry of the original chunk.

One example is shown in Figure 3. Novel.txt and Centos are reloaded files, and they share the

same data chunk, C14. When a user updates the 40 bytes of Novel.txt from offset 1020, TDDFS

calculates that C14 will be modified starting from offset 20 in that chunk. It reads C14 and updates

its content in memory. Then, a new data chunk, NC14, is created, and the corresponding chunk

metadata entry of the Novel.txt file recipe is updated to reference the new chunk. At the same

time, the fast tier reference count of C14 decreases by 1 in its KV-pair.

For read requests, according to the read request offset in the file and the read size, the RFM first

locates the metadata entries that correspond to the data chunks containing the requested data in

the file recipe. Then, the requested data are read from these data chunks to the read buffer, and

this buffer is returned to the application. The data chunks in the fast tier are not exclusively locked

for read operations, and they can serve read requests from different files simultaneously.

Compared to the data of newly created files, the data of reloaded files are more fragmented.

Therefore, the read performance of reloaded files is relatively lower than that of newly created

files. Due to the CoW design for write requests, the write performance of reloaded files is also

lower. However, according to the discussion of file access locality presented in Section 2.2, files

tend to be repeatedly written by applications if they are written once. Only the first write to a

shared chunk has the high performance overhead, and the overhead can be amortized over the

following writes to that chunk. Also, we usually use a flash-based drive as the fast tier, and its

random access performance is not much lower than its sequential access performance.

3.6 Major Data Operation Cases in TDDFS

In TDDFS, files fall into one of three categories: newly created file, deduplicated file, or reloaded file.

TDDFS stores all the metadata in the fast tier, and most metadata operations are still processed the

same way they would be processed in a regular file system. However, the processes used to respond

to data requests are different because of the aforementioned four unique features of TDDFS. When

handling a data request, TDDFS first checks the file category. Next, TDDFS responds to the request

according to the different logic paths described below.

Newly Created File Read and Write: If the file is a newly created file, then the FSL directly

reads or writes data in the fast tier. To maintain good performance on newly created files, there is

no change in their data and metadata structures.
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Reloaded File Read and Write: The details of the data read and write process for reloaded

files are described in Section 3.5. The read and write performance of reloaded files is relatively

lower than that of the newly created files due to the extra overhead of writing new chunks, file

recipe updates, and KV-pair updates.

Deduplicated File Read and Write: The deduplicated files cannot be read from or written di-

rectly to the slow tier. When a file open happens on a deduplicated file, TDDFS starts a background

thread to reload the file back to the fast tier. This reloading process is described in Section 3.4. If

read and write requests happen during the file reloading, then TDDFS uses the following logic to

respond to the requests. For a read request, according to the read request offset in the file and the

read size, the RFM first locates the metadata entries that correspond to the data chunks containing

the requested data in the file recipe. Then, TDDFS reads the requested data from the correspond-

ing data chunks. Note that these data chunks can be located in either the fast tier (the data chunk

has been reloaded to the fast tier and its RF is 1) or the slow tier (the data chunk will be reloaded

shortly and its RF is 1). Then, TDDFS returns the requested data to the application.

For a write request, if the data chunks being written are already reloaded to the fast tier, then

updates are performed directly on the unique data chunks, and CoW is performed on the shared

chunks. The MFs of these chunks are set to 1 in the file recipe. If the data chunks being updated have

not yet been reloaded to the fast tier (their RFs are 0), then TDDFS first reads the corresponding

data chunks from the slow tier to the memory. Then, these data chunks are updated in the memory

and written to the fast tier as new data chunks. The RFs and MFs of these chunks in the file recipe

are set to 1. The DRM will skip a chunk whose RF has already been set to 1 and continue to reload

the next data chunk. To maintain data consistency, concurrent reads or writes are not allowed

during file reloading. Applications experience degraded read and write performance during the

file restoration. After the file is completely reloaded to the fast tier, the read and write performance

will be the same as that of reloaded files.

Other Data Operations: TDDFS also supports other data operations including file deletion and

file truncation. The FSL responds to these operations on newly created files directly. File truncation

(e.g., the file truncate interface in Linux), which is used to cut the file, is treated as a file write

(update) and handled by the write operation logic. File deletions of reloaded files and deduplicated

files are handled by metadata operations including metadata deletion and KV-pair updates done

by the FMM and RFM. An un-referenced chunk whose fast tier or slow tier reference count is 0 in

its KV-pair is cleaned in the corresponding tier by the garbage collection process.

4 IMPLEMENTATION

In this section, we present the implementation details of TDDFS. Rather than implementing TDDFS

in kernel space, we developed the TDDFS prototype based on FUSE [38]. FUSE is a user space file

system with a standard POSIX interface. The prototype consists of about 12K Lines of Code (LoC)

and can be executed on top of Linux systems with FUSE installed. Although the FUSE-based file

systems do not have the same performance as kernel-based file systems, it is used for simplicity and

flexibility as a proof of concept. In the following subsections, we elaborate on the implementation

details of the data management, indexing table, and file deduplication of TDDFS.

4.1 Data Management

In TDDFS, we use the underlying file system to store the data passed through by FUSE. TDDFS cre-

ates two top-level directories for the fast tier and the slow tier as shown in Figure 4. An underlying

file system (e.g., Ext4) formatted SSD is mounted to a directory called Fast-tier that stores meta-

data, newly created files, and reloaded files. An underlying file system formatted HDD is mounted

to a directory called Slow-tier, and it is used to store data chunks of deduplicated files. The data
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Fig. 4. Data layout of TDDFS prototype.

chunks generated by deduplication are stored as files under the Slow-tier directory with unique

names (monotonically increasing unsigned integers). One directory under the Slow-tier directory

acts as one chunk store, and 10,000 data chunks are stored in the same chunk store. As shown

on the right side of Figure 4, directory L1 under the Slow-tier is one of the chunk stores, and data

chunks are stored under this directory. In some data deduplication designs [32, 39], a large number

of chunks (e.g., more than one thousand data chunks) are packed into one container to speed up

the chunk write and restore performance. Container-based chunk storing can be easily adopted in

TDDFS, and it can be combined with other restore performance improvement schemes [32, 33, 40,

41] to further increase the file deduplication and reloading performance.

Referring to the left side of Figure 4, the structure of the directory tree from an application’s view

through FUSE is mimicked twice under the Fast-tier directory in the underlying file system (e.g.,

Ext4). TDDFS creates one Fast-tier subdirectory called Ghost file and one Fast-tier subdirectory

called Ghost directory. These two directories contain ghost files and ghost directories, respectively.

The file and directory structure under Ghost file matches the application’s view including directo-

ries, newly created files, deduplicated files, and reloaded files. Ghost directory is similar but has a

directory entry for each file in the application’s view. If the application view file is a newly created

file, then its data are stored in its matching ghost file, and its ghost directory is empty. During the

migration process, the data in the ghost file of a newly created file are read, deduplicated, migrated

(if there are unique chunks), and deleted. The empty ghost file remains, and its file metadata infor-

mation (e.g., file_stat), file recipe, and other information used for reloading are maintained as files

under its ghost directory. When reloading the deduplicated files back to the fast tier, the unique

data chunks are written to the fast tier under the ghost directory as files. We assume that the un-

derlying file system guarantees the reliability, persistence, and consistency. TDDFS takes care of

the failures that happen before the data are written to the underlying file system. When migrating

the files from the fast tier to the slow tier, the least recently used files (including the files whose

size is smaller than 16KB) are selected to be migrated to the slow tier.

To expand upon the above description, the same example that is used in Figure 2 is also pre-

sented here in Figure 4. The same directory structures are created under both Ghost file and Ghost
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directory. Since log1 and log1_new are newly created files, their data are stored in their ghost files

under Ghost file with the same file names, and their ghost directories are empty. Ubuntu/12.04 and

Ubuntu/14.04 are deduplicated files, and their data are stored under Slow-tier as files of unique

data chunks. DCV1, DCV2, and Centos are reloaded files, and the unique data chunks like C2, C7, and

C14 are stored under the corresponding ghost directories of these files. The file recipe of a reloaded

file or a deduplicated file is stored as a file named Meta under its ghost directory. A unique data

chunk stored in the fast tier or the slow tier can be found using its path and name. In this proto-

type, we assume the fast tier’s space is large enough, and we do not apply the file recipe migration

design to simplify the implementation.

4.2 Indexing Table

We follow the design of BloomStore [35], which is optimized for flash storage, to implement the

deduplication indexing table. In BloomStore, the whole key space is hashed into several instances.

When inserting a KV-pair, the new KV-pair is hashed to one of the instances according to its key,

and the KV-pair is logged to the KV-pair write buffer of this instance. This KV-pair write buffer

is the same size as a flash page. When the buffer is full, it will be flushed to the fast tier as an

immutable KV-block with a timestamp. Each KV-block has one Bloom Filter (BF) to speed up the

KV-pair lookup process. Since the flash-based SSD cannot be overwritten before the whole block

is cleaned [42], BloomStore does not change the KV-blocks directly. Updates and deletions are

achieved by inserting new KV-pairs with the same key into the BloomStore. To delete a KV-pair,

a new KV-pair with the same key and a value of null is inserted.

When searching for a key in BloomStore, the key is hashed to one corresponding instance. The

BFs of this instance are checked first. The KV-blocks whose BFs have positive search indications

are fetched to the cache and searched from the newest one (the KV-pair write buffer) to the oldest

one according to the sequence of their timestamps. The first matching KV-pair with a valid value

is returned. If the key cannot be found in all of the related KV-blocks or the first KV-pair has a null

value, then a negative value is returned. The invalid KV-pairs (the KV-pairs that are updated or

deleted) will be cleaned during the garbage collection process. More implementation details can

be found in Reference [35]. In the current implementation, the KVS is locked when it is processing

one request to ensure data consistency, which will have a performance penalty. TDDFS stores the

KV-blocks in the fast tier as files in the underlying file system.

4.3 File Deduplication

When deduplicating newly created files and modified data chunks of reloaded files, TDDFS reads

the file data into the chunking buffer in memory and uses Adler32 to calculate the 32-bit checksum

of data in the CDC sliding window. If the checksum matches the pre-determined chunking mask

value, then a new cutting point is applied. While we used SHA-1 as our deduplication fingerprint

algorithm, it is no longer considered to be secure and practical hash collisions have been demon-

strated [43]. Therefore, a practical implementation of TDDFS would have to change to a stronger

hash function. When we search for a chunk ID in the indexing table, if the chunk ID already exists

in the indexing table, then a metadata entry will be created and appended to the file recipe to index

the data chunk. If the chunk ID is new, then the new data chunk is stored in the slow tier. Then, a

new KV-pair will be created and stored in the KVS to index the new data chunk, and a metadata

entry will also be appended to the file recipe.

5 EXPERIMENTAL EVALUATION

In this section, we present the results of the performance evaluation. First, we introduce our

evaluation methodology, baselines that are compared with TDDFS, and the workloads we use
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in the evaluation. Then, the performance results and comparisons are discussed. Finally, the cost-

effectiveness is analyzed.

5.1 Experimental Setup and Workloads

To evaluate TDDFS performance, we deployed our prototype on a Dell R420 server with a 2.2GHz

Intel Xeon four-core processor and 12GB of memory. A Samsung 850 PRO 512GB with a SATA

interface is the SSD used as the fast tier. The slow tier is a Western Digital WD RE4 WD5003ABYX

500GB 7200 RPM HDD with a 3.0Gb/s SATA connection to the motherboard. The operating system

is Ubuntu 14.04 with a 3.13.0 kernel, and the underlying file system on both tiers is Ext4.

We implemented four different designs based on FUSE to compare with TDDFS. NoDedup man-

ages the fast tier and the slow tier at the file system level, and there is no deduplication performed

on either tier. Files are migrated between the two tiers according to the LRU policy. AllDedup is

the design where the fast tier and the slow tier are managed at the file system level, and all files

are deduplicated before these files are stored in either tier. When a file is read, the requested data

chunks are located and returned. In this design, data chunks are migrated between the two tiers

according to the LRU policy. FastTierNoDedup is a tradeoff design between NoDedup and AllDedup.

Files in the fast tier are in their original states. When a file is selected to be migrated to the slow

tier, it is deduplicated with the same implementation as TDDFS. If a file in the slow tier is accessed,

then it will be restored to its original state and stored in the fast tier. FastTierNoDedup uses the de-

sign concept of the Dell SC Series hybrid storage solution with deduplication [44]. In SlowTierOnly,

all files are stored in the slow tier to show the slow tier only performance in comparison to other

tiering designs.

To measure and compare the performance of TDDFS, we use throughput, latency, and the

amount of data migrated as the metrics. Throughput is the average number of requests completed

in a time unit. It is calculated as the sum of the data sizes of all requests completed divided by

the sum of total completion times of all file requests. Latency is the average request response time,

measured at the file system level, from when the request is submitted to its completion. The amount

of data migrated is the total amount of data that migrates from the fast tier to the slow tier or from

the slow tier to the fast tier when the whole trace is replayed. During the evaluation, we vary the

value of the fast tier ratio, the deduplication ratio, and the read ratio to measure and compare the

performance of various designs. The fast tier ratio is the percentage of the whole dataset that can

be stored in the fast tier. If the fast tier ratio is 100%, then it means all the data can be stored in

the fast tier. If the fast tier ratio is 25%, then it means 25% of all the file data is stored in the fast

tier and 75% of all the file data is stored in the slow tier. To show the capacity ratio between the

fast tier and the slow tier (i.e., how many times larger the slow tier size is than the fast tier size),

we increase the slow tier size from 0 times, to 1 times, to N times the fast tier size. Thus, the fast

tier ratio is represented from 100% to 50% to 100
1+N

%. For each trace, the total amount of data of all

files is different. It is hard to compare the performance of different traces by using the same fast

tier space size. Therefore, we define another threshold called the actual fast tier usage limit, which

is calculated as the fast tier ratio times the total trace size. During the trace replay, when the total

data size in the fast tier is larger than the actual fast tier usage limit, migration will be triggered.

Note that the real-world capacity of the fast tier (SSD) may not be full when the amount of data in

the fast tier reaches the experiment’s actual fast tier usage limit. In our tests, when we refer to a

fast tier ratio, we really use the calculated actual fast tier usage limit to replay the trace. The dedu-

plication ratio is the original total data size divided by the total data size after the deduplication.

The read ratio is the percentage of read requests among the all the data I/O requests (i.e., among

the combined total number of read requests and write requests).
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Table 2. Details of the Workload Traces

# files # requests Size(GB) Read ratio

Lab_trace 2,400 39,000 22 10%

Var_trace 10,000 32,000 5 45%

Syn_trace 5,000 100,000 100 N/A

The performance of TDDFS is closely related to the file access patterns, file size, read/write ratio,

and the deduplication ratio. Most open-source file traces do not provide the file size and deduplica-

tion ratio information. File system benchmarks generate files with no meaningful content, so the

deduplication ratio is still unknown. We use three different workloads to evaluate the performance

of TDDFS, and the details of these three traces are shown in Table 2. Lab_trace is a file access trace

collected from a file server in our lab for one week on top of AllDedup. We collected the size of

each file and the file requests. The overall deduplication ratio of Lab_trace is 4.1. Var_trace is col-

lected when we run the Filebench [45] workload varmail with the default Filebench configuration.

Again, we collected the size of each file and the file requests. To comprehensively examine the

relationship between performance and the deduplication ratio, read ratio, and fast tier ratio, we

synthesize a set of file access traces, called Syn_trace, which has 100GB of files and 100,000 access

requests. The file size and access patterns follow the Zipfian distribution (20% of the files have

80% of the total accesses and occupy 80% of the total size), which aligns with the observations in

[23]. Different deduplication ratios, read ratios, and fast tier size ratios of Syn_trace are evaluated

during the experiments. This means we generate a set of Syn_traces with the same file size and

access distribution but different read request ratios. When the read ratio is selected, the number

of read and write requests on each file is decided, and these requests are distributed to the dura-

tion of the whole trace according to the Zipfian distribution (80% of the requests happen after the

first request to this file within 20% of the trace duration). The Syn_trace generated in this way

with the Zipfian distribution has good locality, which can substantially benefit the tiered designs.

Therefore, the evaluation of Syn_trace shows how TDDFS will perform when locality is good. In

each test, the trace replays 5 times and we show the average value. Since the benchmark-generated

Var_trace and the synthetic Syn_trace do not have meaningful time stamps, we replay the records

of the three traces one after another (i.e., when the current request is finished and returned, the

next request is issued).

A trace provides both file information and access information. To replay the traces, we make

some changes to the prototype implementation such that the files are accessed according to the

trace content. Before we replay the trace in each test, all the files are written to the prototype

system in the same order as they appear in the trace with the collected size and no meaningful

content. The earliest created files will be migrated to the slow tier if the fast tier space usage hits

the actual fast tier usage limit. Since the trace does not have the fingerprint of the file content,

we can only emulate the deduplication process by making small changes in the FMM, DRM, and

RFM. During deduplication, the byte stream is still processed by the chunking and fingerprint

generating steps. However, the real cutting points are randomly generated between a minimal

chunk size (512B) and a maximal chunk size (16KB). Suppose the deduplication ratio is Rdr in

this test. Then ( 100
Rdr

)% of the chunks of this file are randomly selected as unique chunks, and

the remaining (100 − 100
Rdr

)% of the file’s chunks are duplicate chunks. The fingerprint of a unique

chunk is assigned as a unique increasing integer, Ui , which increments from 0. The fingerprints

of duplicate chunks are randomly selected between 0 and the largest Ui generated to show that

they are duplicates. The data of a unique chunk are stored in the slow tier as a file. After we

have the fingerprint of the chunk, the corresponding KV-pair is generated and inserted into the
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KVS, or the existing KV-pair is fetched from the KVS and updated. Then, the metadata entry with

the corresponding content is written to the file recipe. In our experiment, we did not migrate the

recipes to the slow tier if their size is very large. However, in a production scenario, especially

when the accumulated files are very large, migrating the recipes to the slow tier is recommended.

The same emulation process is also used during the trace replay when reloading deduplicated

files and updating reloaded files. For example, if the deduplication ratio is Rdr , when reloading

a file from the slow tier to the fast tier, ( 100
Rdr

)% of the chunks of this file are read and written to

the fast tier as unique data chunks. We assume that all reloaded files have the same deduplication

ratio. Therefore, ( 100
Rdr

)% of the chunks are treated as new chunks that are not already in the fast

tier. When writing the reloaded file, there is a (100 − 100
Rdr

)% chance that the chunk will be CoW,

since there will be (100 − 100
Rdr

)% of the chunks of this file that are shared chunks. Although the

emulated deduplication process is slightly different from deduplicating the files with real content,

it has similar latency, throughput, and resource consumption to real deduplication. Therefore, we

can use it to emulate the migration process with different deduplication ratios, and it can show the

performance, cost-effectiveness improvement, and tradeoffs of TDDFS. In the real-world work-

loads, when more and more data chunks are accumulated in the slow tier, the restore performance

penalty caused by the data chunk fragmentation will lower the overall throughput.

5.2 Throughput and Latency

When the deduplication ratio and read ratio are high, TDDFS can deliver better performance ac-

cording to our tests. In Lab_trace, as shown in Figure 5(a), the throughput of TDDFS is slightly

lower than that of FastTierNoDedup and NoDedup. As the fast tier ratio decreases from 100% to 20%,

more files are migrated and stored in the slow tier. Thus, the throughput decreases and latency

increases in all four tiering designs. In Lab_trace, most of the requests (90%) are write requests due

to the heavy uploading and updating of files in the file server. High write ratio causes lower aver-

age throughput in TDDFS, which is caused by the CoW and recipe updates of the reloaded files.

However, compared with the other three tiering designs when the fast tier ratio is below 33%, as

shown in Figure 5(a) and (b), the rate of throughput decrease and rate of latency increase of TDDFS

is better, since TDDFS can store more files in the fast tier than the other designs. By storing more

files in the fast tier, the performance degradation of TDDFS is alleviated. If read requests dominate

the file operations, then TDDFS can achieve better performance. In Syn_trace, we configure the

read ratio as 80% and the deduplication ratio as 3. As shown in Figure 5(c) and (d), when the fast

tier ratio is higher than 33%, the throughput of TDDFS is close to that of FastTierNoDedup and

NoDedup. When the fast tier ratio is lower than 33%, the throughput of TDDFS is the best among

the four designs. Again, this is because more reloaded files can be stored in the fast tier, and most

of the file accesses are read requests. Note that in a typical tiered storage system, the fast tier ratio

is low.

The performance of TDDFS is closely related to the deduplication ratio of the files. Since the fast

tier ratio of 25% is the performance turning point in Lab_trace and Syn_trace, we fix the fast tier

ratio to 25% in Var_trace to evaluate the performance with different deduplication ratios. As shown

in Figure 5(e) and (f), the throughput and latency of FastTierNoDedup and NoDedup are nearly

the same when the deduplication ratio varies from 1 to 4.6. Since FastTierNoDedup and NoDedup

store the original files in the fast tier, the only difference is that FastTierNoDedup deduplicates

files in the slow tier and restores files from the slow tier to the fast tier. Thus, deduplication ratio

has little impact on the overall performance of FastTierNoDedup and NoDedup. Compared to the

relatively flat throughput and latency of those two designs, AllDedup has a large change when

the deduplication ratio is about 4. If the deduplication ratio is 4 or larger, then AllDedup can store
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Fig. 5. Performance comparison of TDDFS, NoDedup, AllDedup, FastTierNoDedup, and SlowTierOnly.
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all the files in the fast tier, since the fast tier ratio is configured at 25% in this test. Therefore, its

throughput increases and the latency has a large reduction. In contrast to these three designs,

the throughput of TDDFS increases and the latency decreases gradually as the deduplication ratio

increases from 1 to 4.6. As the deduplication ratio increases, more reloaded files can be stored in the

fast tier with the help of non-redundant chunk reloading and unique chunk sharing as described in

Section 3. Thus, the performance degradation caused by the data migration is alleviated. When the

deduplication ratio is higher than 3.3, the throughput and latency of TDDFS are the best among

the four designs. SlowTierOnly shows that if we only use the slow tier, its overall performance will

be the worst. Its throughput can be more than 50% lower than that of TDDFS, and its latency can

be 100% higher than that of TDDFS. In general, the performance of TDDFS is closely related to the

deduplication ratio of files, and TDDFS performs better when the deduplication ratio is higher.

Since the read ratio is fixed in Lab_trace and Var_trace, we synthesize a set of Syn_traces with

the same files, deduplication ratio, and access patterns but different read ratios. The access distri-

bution we use is Zipfian, so most of the operations are on a small portion of the files. The results

are shown in Figure 5(g) and (h). As the read ratio decreases from 90% to 10%, the performance of

FastTierNoDedup and NoDedup does not change much, since files are accessed when they are in

their regular format in the fast tier. The throughput of TDDFS decreases from 370MB/s to about

250MB/s as the read ratio decreases. Due to the low performance of the write operation on the

reloaded files, a lower read ratio (higher write ratio) will cause a lower throughput in TDDFS.

When the deduplication ratio is 3, the fast tier ratio is 25%, and the read ratio is higher than 70%,

the throughput of TDDFS is higher than the others. According to Roselli et al. [22], the number

of read requests in a typical file system is usually several times higher than the number of write

requests (e.g., the read ratio is 80% or even higher). Thus, TDDFS can deliver good performance in

a real production environment.

Also, as the read ratio decreases, the latency of TDDFS, FastTierNoDedup, and NoDedup does not

change much, since most requests are performed in the fast tier. Due to the deduplicated nature

of reloaded files, more hot files can be stored in the fast tier by TDDFS than in the others. Thus,

its average latency is lower than that of the others. Since AllDedup performs deduplication to all

the files, the data being written need to be deduplicated before the data are stored. Also, each read

needs to assemble the requested chunks before returning the data to the application. Thus, its

performance is lower than that of other tiered designs. In our implementation of AllDedup, which

does not have any restore optimization, the throughput of read is lower than write, and the latency

of read is much higher than write. Thus, as the read ratio decreases, the throughput of AllDedup

increases slightly and its latency decreases. Clearly, without the help of the fast tier, SlowTierOnly

shows the worst performance among all the designs.

In general, according to our evaluation, the overall performance of TDDFS is better than that

of AllDedup. In most cases, the latency of TDDFS is lower than the others, because more reloaded

files are stored in the fast tier. With a higher deduplication ratio, higher read ratio, and lower fast

tier ratio, TDDFS performs better, and in some cases, TDDFS performs the best, as shown in the

evaluations.

5.3 Data Migration between the Fast Tier and the Slow Tier

The data migration cost is measured as the total amount of data migrated from the fast tier to

the slow tier or from the slow tier to the fast tier after executing the whole trace. The results

are shown in Figure 6. In the four designs (excluding SlowTierOnly, since it does not have any

data migration), NoDedup always has the largest data migration volume, since all the files are in

their original states. Also, since fewer files can be stored in the fast tier without deduplication,

file migration happens more frequently in NoDedup. The migration cost of AllDedup is the lowest,
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Fig. 6. Migration cost comparison of TDDFS, NoDedup, AllDedup, and FastTierNoDedup.

since all the files are deduplicated, and only the unique chunks are migrated between the two

tiers. Also, AllDedup can hold more files in the fast tier than the others, and migrations happen

less frequently. FastTierNoDedup performs better than NoDedup, but its total migrated data size is

still much higher than that of AllDedup and TDDFS. FastTierNoDedup reduces the amount of data
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Fig. 7. Migration cost comparison of TDDFS, NoDedup, AllDedup, FastTierNoDedup, and SlowTierOnly.

that is written to and read from the slow tier via slow tier deduplication. However, the amount

of data being migrated from or written to the fast tier is the same as that of NoDedup. Thus, the

migration cost of FastTierNoDedup is much higher than that of TDDFS and AllDedup.

As shown in Figure 6, the total amount of data migrated between the fast tier and the slow tier of

TDDFS is close to that of AllDedup. Although TDDFS needs to read all the data of a newly created

file when it is migrated to the slow tier, TDDFS avoids the re-deduplication and migration if the

data chunks of a reloaded file are not changed during its lifecycle in the fast tier. Thus, the total

migration data volume is close to that of AllDedup. Inevitably, as the fast tier ratio decreases, the

fast tier will store fewer files, and data migration will occur more frequently. The rate at which

the total amount of migrated data of TDDFS increases as the fast tier ratio decreases is the lowest

among the four designs, as shown in Figure 6(a)–(d). With higher deduplication ratios, the migra-

tion cost of TDDFS becomes lower, as shown in Figure 6(e) and (f). The read ratio does not show a

major influence on the TDDFS migration amount, as seen in Figure 6(g) and (h). On average, our

evaluations show the total amount of data being migrated between the fast tier and the slow tier

of TDDFS is about 10% of NoDedup, 20% of FastTierNoDedup, and close to AllDedup in most cases.

In general, the migration cost of TDDFS is much lower than that of FastTierNoDedup and NoDedup

and is close to that of AllDedup. Lower migration cost can reduce the storage bandwidth used by

migration and alleviate the performance impact on the primary workloads during the migration.

It can also reduce wear on flash-based SSDs.

5.4 Cost-Effectiveness Analysis

We use the average $/GB price to compare the cost-effectiveness of the four designs. We use the

final utilized space in the fast tier and the slow tier after replaying the trace to calculate the average

$/GB. Here, we use the $/GB of an Intel 750 Series 400GB SSD (SSDPEDMW400G4R5) and a Seagate

6TB enterprise HDD (ST6000NM0024) as the base to analyze the cost-effectiveness. For these two

devices, the $/GB of SSD is about 1 [46] and $/GB of HDD is about 0.04 [47].

We use Var_trace to analyze the $/GB variation as the deduplication ratio increases, and we

assume that the fast tier size is 25% of the total data size. As shown in Figure 7(a), the $/GB of

NoDedup remains the same as the deduplication ratio increases because no deduplication is used.

The $/GB of AllDedup, TDDFS, and FastTierNoDedup decreases as the deduplication ratio increases,

since data deduplication reduces the amount of data being stored in the fast tier and the slow tier.

When the deduplication ratio is larger than 4, the $/GB of FastTierNoDedup keeps a similar saving

ratio while the $/GB of AllDedup and TDDFS has a significant decrease. When the deduplication

ratio is high enough, AllDedup and TDDFS are able to save space in the fast tier, which causes

a significant reduction in $/GB. In this calculation, when the deduplication ratio is higher than
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4.3, TDDFS no longer needs any slow tier space, and all files are stored in the fast tier. As the

deduplication ratio continuously increases, TDDFS can save more space on the fast tier and the rate

of $/GB decrease is nearly the same as that of AllDedup. In general, TDDFS can achieve better cost-

effectiveness than that of NoDedup and FastTierNoDedup. Its cost-effectiveness is close to that of

AllDedup. With a high deduplication ratio, TDDFS can achieve nearly the same cost-effectiveness

as that of AllDedup.

In a tiered storage system, the size of the fast tier is usually much smaller than that of the slow

tier. We let the size of the slow tier be 20 times larger than that of the fast tier and compare the

$/GB of each design when the deduplication ratio is fixed at 4. As shown in Figure 7(b), the $/GB

of NoDedup is about 4 times that of TDDFS due to no deduplication. The $/GB of SlowTierOnly

is also much higher than that of TDDFS, AllDedup, and FastTierNoDedup. It shows that the slow

tier only system without deduplication cannot provide either good performance or good cost-

effectiveness. The $/GB of TDDFS, AllDedup, and FastTierNoDedup is about 0.02 and close to each

other. This means the cost-effectiveness of TDDFS, AllDedup, and FastTierNoDedup is very close.

Importantly, according to the performance evaluation in Section 5.2, TDDFS usually has better per-

formance than that of AllDedup and FastTierNoDedup. Therefore, TDDFS simultaneously achieves

good tradeoffs in terms of performance and cost-effectiveness.

6 RELATED WORK

Some previous studies tried to address the challenges of primary data deduplication in different

ways [48–51]. Most of them sacrifice the deduplication ratio by applying fixed-size chunking and

make tradeoffs to improve the throughput. iDedup [48] sacrifices deduplication ratio to ensure

higher throughput and lower latency. It may choose not to deduplicate non-sequential duplicate

blocks to maintain locality so the deduplication and restore performance can be improved. Dmd-

edup [49] is implemented in a device mapper that can be used by most existing file systems and

applications. Although it did place deduplication structures like the fingerprint index in a fast de-

vice and the deduplicated data blocks on a slower device, it does not have the concept of tiered

storage, and data cannot be migrated according to the data activity.

Instead of using the SSD and HDD as a tiered design, some studies use the SSD as a cache for

primary storage and apply deduplication to the SSD to improve the system performance, SSD en-

durance, and space utilization. Nitro [52] combines deduplication and compression to improve the

SSD cache capacity. By carefully designing the indexing structure and using Write-Evict Units that

are the same size as the flash erase block, Nitro makes a good tradeoff between the SSD endurance

and the performance of a primary storage system. CacheDedup [27] also introduces deduplication

to the flash-based cache to improve the space utilization and flash lifespan. Uniquely, CacheDedup

uses a separate Data Cache (for data blocks in the storage) and Metadata Cache (for fingerprints

and other metadata information about the data blocks in the storage). This is done to reduce the

space used by metadata and to better collect the historical metadata information for duplication

reorganization. Moreover, CacheDedup proposes the D-LRU and D-ARC cache replacement algo-

rithms, which are duplication-aware, to further improve the cache performance and endurance.

Similarly, TDDFS maintains the deduplicated state of reloaded files to achieve better capacity uti-

lization of the fast tier. However, TDDFS keeps some of the new and hot files in their original state

without deduplication to gain the best performance for these files.

Other primary deduplication works [4, 53–55] are implemented at the file system level. There

are three file systems with a deduplication function: SDFS [54], Lessfs [53], and ZFS [4]. SDFS and

Lessfs are implemented in user space and based on FUSE. SDFS [54] combines fixed-size and vari-

able chunking to eliminate chunk duplicates among files, especially for virtual machines, but SDFS

cannot manage two storage tiers. Lessfs uses fixed-size chunking, and it is implemented in C. Thus,

ACM Transactions on Storage, Vol. 15, No. 1, Article 4. Publication date: February 2019.



4:24 Z. Cao et al.

its overhead might be lower than that of SDFS, and it can deliver higher throughput. However, its

deduplication ratio is worse than that of TDDFS. Different from SDFS and Lessfs, ZFS does not

support deduplication in its basic functions. When users enable deduplication in one directory, all

data written in the directory will be deduplicated to gain better space utilization. However, its per-

formance is limited by the memory space for deduplication metadata [49]. Although these works

apply deduplication at the file system level to improve space utilization, they do not distinguish

active and less-active files to selectively deduplicate them, and they do not operate in two-tier

storage systems.

7 CONCLUSIONS AND FUTURE WORK

It is challenging to develop high-performance but low-cost file systems on primary storage. Pre-

viously, researchers focused on block-based tiered storage designs and primary deduplication to

achieve this goal. However, problems still exist in these solutions such as migration efficiency,

deduplication penalty, and isolation between the block-level management and the upper-layer ap-

plications.

To conquer these challenges, we design TDDFS to manage a two-tier storage system and achieve

efficient file-level migration. First, we reduce the storage I/O bandwidth required between tiers dur-

ing migration by eliminating duplicate chunks and enabling data chunk sharing among reloaded

files. Second, to solve deduplication latency and throughput issues, we selectively deduplicate less-

active files. In this way, we can minimize the performance impact on the whole system. Finally,

combining deduplication with data chunk sharing in both tiers further improves the space uti-

lization and reduces costs. In our evaluation, TDDFS achieves high performance and low $/GB at

the same time. In the future, we plan to further improve the deduplication ratio and minimize the

performance impact by designing a more intelligent file selection policy, applying deduplicated

file pre-reloading, implementing a high-performance indexing table, and using adaptive chunking

algorithms.
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