
1

Guaranteed Bang for the Buck: Modeling VDI
Applications to Identify Storage Requirements

Hao Wen, David H.C. Du, Milan Shetti, Doug Voigt, and Shanshan Li

Abstract—In the cloud environment, most services are provided by virtual machines (VMs). Identifying storage requirements of VMs is
challenging, but it is essential for good user experiences while optimizing use of storage resources. Determining the storage
configuration necessary to support and satisfy VMs first requires an accurate description of the VM configurations, and the problem is
further exacerbated by the diversity and special characteristics of the VMs. In this paper, we study Virtual Desktop Infrastructure (VDI),
a prevalent and complicated VM application, to identify and characterize storage requirements of VMs and determine how to meet such
requirements with minimal storage resources and cost. We first create a model to describe the behavior of VDI, and we collect real VDI
traces to populate this model. The model allows us to identify the storage requirements of VDI and determine the potential bottlenecks
of a given storage configuration. Based on this information, we can tell what capacity and minimum capability a storage configuration
needs in order to support and satisfy given VDI configurations. We show that our model can describe more fine-grained VM behavior
varying with time and virtual disk types compared with the rules of thumb currently used in industry.

Index Terms—VDI; modeling; storage;

F

1 INTRODUCTION

With the rapid development of virtualization technology, tra-
ditional data centers are increasingly replacing dedicated physi-
cal machines with virtual machines (VMs) to provide services.
Apart from improving hardware utilization, virtualization enables
seamless migration of applications to a different physical host
for the purpose of load balancing, planned software/hardware
upgrades, etc. To avoid migrating data along with the in-memory
state of the virtual machines, virtual machine data is typically
stored on shared storage. In the shared storage architecture, mul-
tiple VMs/applications compete with each other for input/output
(I/O)resources and capacity of the storage system. To reduce costs,
data center administrators need to determine how to meet the
storage requirements of these VMs with the minimum amount
of required resources.

In this paper, we investigate how to identify storage require-
ments to support one popular type of VM application, Virtual
Desktop Infrastructure (VDI) [1], [7], [13], [20], [36]. VDI runs
multiple VMs with different operating systems and applications
on several physical servers in a data center. This use of VMs is
also known as desktop virtualization with each instance called a
virtual desktop. Current VDI sizing work [9], [10], [15], [29] is
unable to give an accurate description of the storage requirements
of virtual desktops. They either use rules of thumb to guide storage
provisioning [15] or test the performance of their storage array
under a given fixed number of VDI instances [10]. To ensure VDI
users to not see degraded performance in practice, administrators
typically over-provision storage resources which may cause some
waste. In addition, how CPU, memory, and storage resources of
virtual desktops are configured may have a considerable impact
on the I/O behavior of VDI. For example, each virtual desktop
may access multiple heterogeneous data disks at different times
causing each data disk to see significantly different I/O workloads.
Therefore, how physical storage is configured and where these
data disks are placed will impact whether the storage requirements

are met. Unfortunately, current VDI sizing work fails to give a
clear description of VDI configuration and its required storage
resources.

When considering VDI performance, CPU, memory and stor-
age can all be potential bottlenecks. We assume enough CPU
and memory are provided in a data center. Besides, VMs can be
migrated to another host [24] if the current host utilization is high.
In this paper, we focus only on the storage requirements of a given
VDI configuration to guarantee good performance.

Our objective is to meet storage requirements of VMs with
minimal storage resources. This depends on many practical fac-
tors. In this paper, we mainly focus on the required storage
capacity, throughput, and IOPS (I/Os per second). We create a
model to describe I/O behavior of a single virtual desktop as well
as a group of virtual desktops. With the model, we are able to tell
when and where the performance bottlenecks occur. Based on this
foundation, we can identify what capability a storage appliance
needs in order to satisfy a given VDI configuration and its storage
requirements.

To create such a model, we need to know the detailed imple-
mentation of VDI, virtual desktop types, and access patterns of
virtual desktops. The implementation includes the organization of
underlying storage and the composition of each virtual desktop.
Considering that there are multiple virtual desktop types, the
model should adapt to both homogeneous and heterogeneous
combinations of virtual desktops. Each desktop undergoes certain
stages (boot, login, steady state, and logoff) during its life cycle
and accesses multiple different data disks at different stages. The
access pattern of a virtual desktop is affected by its current stage
and the data disks it accesses at different stages. Those data disks
have different functions and see distinct I/O access patterns. When
large numbers of virtual desktops arrive at different times, the
aggregation effect of I/Os will lead to more variance of storage
access patterns.

Our contributions are summarized as follows:

2

• We describe several different representatives of VDI and
discuss their unique storage access patterns.

• We propose a system model to describe the I/O behavior
of both homogeneous and heterogeneous configurations of
VDI. To the best of our knowledge, this is the first model
to do so for real life VDI systems.

• We identify the storage requirements of VDI and deter-
mine the bottlenecks on specific target virtual disks at a
specific time.

• With the detailed storage requirements, we show how to
size a minimum storage configuration that satisfies these
VDI requirements.

The organization of this paper is as follows: Section 2 provides
a detailed background of VDI and presents its unique charac-
teristics. In Section 3, we propose our system model. Section 4
analyzes the VDI traces and discusses the storage requirements
and bottlenecks generated from the model. Section 5 shows the
application of our model in real life. In Section 6, we discuss
future research work on migrating virtual desktops from VMs
to Docker containers including some preliminary experimental
results showing the feasibility of using Docker containers in VDI.
Section 7 presents related work and Section 8 concludes the paper.

2 BACKGROUND
Virtual Desktop Infrastructure (VDI) is a virtualization tech-

nology to provide desktop environments to remote users. VDI runs
desktop operating systems (e.g., Windows, MacOS, etc.) on virtual
machines (VMs) in a data center and presents normal desktops to
remote users. Thus, a virtual desktop is a desktop environment or
desktop operating system running in a VM. A virtual desktop can
be associated with multiple different virtual disks. These virtual
disks can reside either on local or shared storage in a data center.
Virtual desktops are managed centrally in VDI. A user can use
client devices such as personal computers, laptops, tablets, and
mobile phones to connect to and operate his/her virtual desktop.
An example of VDI architecture is shown in Figure 1. In VDI, all
virtual desktops can be thought of as clones. They are clones of a
master image. A master image is a VM template from which other
virtual desktops originate. Virtual desktops are running in VMs
created through hypervisors on physical servers.

VM

Hypervisor

Hardware

...

User
Login

Virtual Disks

Master

Desktop

OS

APP

VM

Desktop

OS

APP

Storage Device

Virtual Desktop or Clone

Fig. 1: An example of VDI architecture.

In the remainder of this section, we first introduce different
clone types. Next, we describe how virtual desktops are assigned
to users. We then introduce how we get different virtual desktop
types by combining clone types and assignments. Finally, for each
virtual desktop type, the associated data disk types are introduced.

2.1 Clone Type
There are two main types of virtual desktop clones. One is the

full clone. A full clone copies the master image into its own virtual
disk (not shared). The other type is the linked clone. Different
from full clones, linked clones share the same operating system
(OS) data as long as they are linked to the same replica (a clone
of the master image). Each replica serves as a common base for a
group of linked clones.

2.2 Virtual Desktop Assignment
Virtual desktop assignment binds a user with a virtual desktop.

There are two main types of virtual desktop assignment: dedicated
assignment and floating assignment. Dedicated assignment assigns
a virtual desktop exclusively to a certain user. After the assign-
ment, when a user tries to log into his/her virtual desktop, it is
always the same VM serving the user. User profiles and user data
are permanently saved in its local virtual disks. Both full clones
and linked clones can be dedicated. Floating assignment arbitrarily
assigns a virtual desktop to a user. Each time a user logs in, he/she
may be assigned to a different VM. User profiles and user data are
not saved in local virtual disks but are rather saved remotely. Only
linked clones can be assigned as floating. Dedicated assignment
has the advantages of good virtual desktop launching speed and
user data access speed, but floating assignment allows for more
flexible resource allocation across the whole system.

2.3 Virtual Desktop Types and Their Associated Disks
Combining clone type with assignment gives three kinds of

virtual desktops: floating linked clone, dedicated linked clone, and
dedicated full clone. Each type of virtual desktop is associated
with a different set of virtual disks. According to the usage and
types of data stored, there are six types of virtual disks: master
image, replica, primary disk, persistent disk, remote repository,
and full clone disk. The remainder of this section describes which
of these virtual disk types are associated with each of the three
virtual desktop types.
Floating linked clone. By definition, each linked clone is linked
to a shared replica (a clone of the master image). To provision
linked clones, a replica must first be created from the master
image. In the linked clone pool, we should provision spare space
for multiple replicas with different operating systems. Besides the
shared replica, a primary disk contains the essential system data
that is needed for each linked clone to remain linked to the shared
replica and to function as an individual desktop. Floating linked
clones are usually configured not to save user profiles and user data
in their local virtual disks. User profiles are preserved in a remote
repository independent of the virtual desktop. Each user has his
own repository. Typically, they are stored in a NAS (Network
Attached Storage) device. In the remaining of this paper, we use
remote repository and NAS interchangeably.
Dedicated linked clone. Dedicated linked clones include those
data disks essential for linked clones: replica and primary disk.
However, what is unique about dedicated linked clones is that a
separate persistent disk can be configured to store user profiles and
user data. This disk is dedicated to a user. Attaching a persistent
disk to a linked clone, virtual desktop makes that virtual desktop
dedicated to the user. A remote repository is also needed to
permanently store user profiles and user data.
Full clone. A full clone is always dedicated. Each full clone is
an independent virtual desktop. Therefore, a full clone uses its
own full clone disk (its regular virtual disk) to store the operating
system, user profiles, and user data.

3

3 SYSTEM MODEL
In order to understand the storage requirements of a VDI

system, we propose a model to describe a VDI system in a data
center. Based on this model, we can infer when and where the
storage bottlenecks are. Since virtual desktops run in VMs, we
describe the I/O behavior of VMs that are hosting virtual desktops
in the model. We first model a single VM and then include
different types of VMs to model a large number of VMs in VDI.

3.1 VM Life Cycle
A VM in VDI has multiple stages during its life cycle. Each

stage shows distinct I/O behavior. Overall, a VM life cycle has
four stages: boot, login, steady state, and logoff. In the boot
state, VMs are booting. If many of those virtual desktops are
powered on at the same time, or concentrated within a small time
period, it becomes a boot storm. For large systems serving virtual
desktops across multiple time zones, there can be several boot
storms per day. After desktops are powered on, users will log
into the desktops. Since the boot stage can be a storm, the login
stage can also be a storm just after boot. After users log in, they
start their everyday work, and virtual desktops transit to steady
state. Compared with the boot stage and login stage, the storage
throughput and IOPS are more predictable as people go about
their daily routine at steady state. Depending on the application,
different people may generate different I/O loads (e.g., watching
videos, editing documents, etc.). Nevertheless, the I/O behavior of
a virtual desktop in this stage is much steadier than in the login or
boot stage. Logoff is the final stage during a VM life cycle.

3.2 Data Access Sequence
As we discussed in the previous section, different virtual disks

are accessed by various types of virtual desktops. Even for the
same virtual desktop type, virtual disks may see distinct I/O access
patterns at different stages. We will now discuss how each virtual
desktop type accesses virtual disks at each stage.
Data accesses of floating linked clones. The storage architecture
of floating linked clones is shown in Figure 2(a). Multiple floating
linked clones are running on hypervisors across different physical
servers. On each server, there may be one or multiple master
images to generate linked clones. Each floating linked clone is
linked to a shared replica. Additionally, a primary disk is bound
to a floating linked clone. These virtual disks are grouped into
different data stores. Typically, each data store only has one type
of virtual disk. In theory, there are no rules regarding which
types of storage (SSD, HDD, etc.) should host those virtual disks.
Administrators can opt to place those virtual disks on any type of
storage. However, without detailed analysis and characterization
of VDI demand, it is hard for the administrator to give a good
placement that satisfies VDI storage requirements. This is the
focus of our paper. The green lines and red lines in the figure show
the data accesses in the boot and login stage, respectively. When a
virtual desktop is booting, shared OS data have to be read from the
replica first. These data are loaded into VM memory to initiate a
system boot. Those essential binaries, libraries, etc. are written to
the linked clone primary disk as well for future accesses. When a
user tries to log in, the virtual desktop must first load user profiles
from the remote repository to memory to authenticate the user
and then configure the desktop settings. The user profiles are also
written to the linked clone’s primary disk for future accesses. After
the desktop environment is loaded, the virtual desktop goes to the
steady state. The user operations during steady state may need
to access user data like the user’s personal documents, videos,

photos, music, etc. stored in the remote repository. These data
are downloaded to the primary disk when first accessed. All
subsequent accesses are directed to the copies on primary disk.
Any changes to the user data are synchronized to the remote
repository at regular intervals. Once the user logs off, that virtual
desktop is cleaned, so no user profiles or user data is saved on that
primary disk. When that user logs into his/her desktop again, a
different VM may be assigned.
Data accesses of dedicated linked clones. The data accesses
of dedicated linked clones are shown in Figure 2(b). During the
boot process, there is no need to load OS data from the replica
anymore as long as it is not the first boot of a fresh desktop.
Those OS data are already stored in primary disk. During the
login process and steady state, user profiles and user data are read
from the persistent disk rather than from the remote repository.
The persistent disk acts as a cache of the remote repository. During
steady state, synchronization of user profiles and user data between
persistent disk and the remote repository occurs.
Data accesses of full clones. A full clone is like a regular desktop.
All information including OS data, user profiles, and user data is
stored in full clone disk. Thus, all I/O accesses are on this type of
virtual disk during all stages.

Table 1 shows when each type of virtual desktop will access
each kind of virtual disk. In the table, we omit master image
because it is not accessed by virtual desktops at runtime. We
also omit logoff stage because people do not care about the
performance of logoff.

3.3 VM Model
We define a model to answer at time t, how much data will

be read from and written to each virtual disk at a given time t.
The basic idea is to sum all read I/Os and write I/Os happening on
the same virtual disk at time t. In the following subsections, we
discuss the model for a single virtual desktop and multiple virtual
desktops, respectively.

3.3.1 Single VM
Formula 1 calculates the overall amount of data accessed on a

target by a VM in life cycle stage for a single VM. The target is the
virtual disk that I/Os reach as listed in Table 1. The stage is the VM
life cycle. RWperstage,target is the read ratio or write ratio during
different stages on different targets when we calculate the size of
read data and write data, respectively. The I/O sizes Si

stage,target are
several discrete values. Since there are many different I/O sizes,
here we only choose several significant I/O sizes at each life cycle
stage on each target. An I/O size is significant when it accounts for
most of the I/Os. We decide significance using two factors: 1) the
access frequency of the I/O size is high, and 2) the total amount
of data transferred under this I/O size is large. For a stage and
target, the percentage of total I/Os that are of a certain significant
I/O size i is denoted as Psizeistage,target. Estage,target(t) describes
the expected number of I/Os at time t, which tells how many I/Os
arrive at target during stage at time t. In practice, when calculating
how many I/Os are expected to come at time t, we can multiply
by a small time interval dt (e.g., 1 second). We do the summation
for all significant I/O sizes i to obtain the overall amount of data
accessed on a target at VM life cycle stage.

∑
i

Estage,target(t)× dt×RWperstage,target

× Si
stage,target × Psizeistage,target

(1)

4

Hypervisor

FLC

Hardware

FLC FLC...

Hypervisor

FLC

Hardware

DLC ...

Storage

Array 1

(SSD)

Storage

Array i

(Hybrid)

Storage

Array N

(HDD)

.

Data Store

Remote

Repository

NAS

Download

Floating

Linked Clone

User

First login A second login

Master

...

1. Boot

Load

OS

Data

2. Login

User Profile

and User

Data

Replica

... FLC DLC

...

Primary Disk

Sync

During

Steady

State

(a) Floating Linked Clone Storage Configuration

Hypervisor

DLC

Hardware

...

...

Storage

Array 1

(SSD)

Storage

Array i

(Hybrid)

Storage

Array N

(HDD)

.

Master

Data Store

Remote

Repository

NAS

Sync

During

Steady

State

Dedicated

Linked

Clone User

First login A second login

...

1. Boot

 Load

OS

Data

2. Login

Read Cached

User Profile

and User

Data

Primary Disk
Persist

DLC DLC

Hypervisor

FLC

Hardware

DLC DLCFLC... ...

Replica

(b) Dedicated Linked Clone Storage Configuration

Fig. 2: VDI Storage Configuration.

TABLE 1: Virtual Disks Accessed at Each Stage by Different Virtual Desktop Types
B=Boot L=Login S=Steady State

Replica Primary Disk Persistent Disk NAS Full Clone Disk
Floating Linked Clone B B,L,S - L,S -
Dedicated Linked Clone - B,L,S L,S S -
Full Clone - - - - B,L,S

3.3.2 Multiple VMs

In contrast to a single VM, more factors need to be considered
when including a number of virtual desktops: 1) VMs start to
boot (arrive) at different time, 2) I/O behavior of different virtual
desktop types are different. 3) IO behavior of VMs running
different operating systems or user applications are different. The
VM arrival rate is the key to including multiple VMs in the model.
In a data center, VMs arrive at different time, so the multiple
VM model should also include an arrival distribution. We use a
function N(x) to describe the number of VMs arriving at time
x. Different virtual desktop types determine which virtual disks
are targets. Virtual desktop types along with the operating system
types and user applications affect the arriving I/O sizes as well as
their percentages at time t. When we determine the amount of data
accessed on each target, we base it on the virtual desktop type and
the stage they are in according to Table 1.

3.3.2.1 Assumptions
In order to make the model of multiple VMs simple and

practical, we make several assumptions. First, the VM arrival
rate is not related to virtual desktop types, operating systems, or
user applications, and this arrival rate of different virtual desktops
follows a distribution. Second, login immediately follows boot and
there are no idle intervals. In the following subsections, we show
how these assumptions are applied to the model.

3.3.2.2 Multiple VMs of the Same Type
If multiple VMs are of the same virtual desktop type and have

the same operating system and user applications, their parameters
are all the same. In this case, we only need to consider how
to integrate the I/O requests of VMs at different stages into the

model. The overall amount of data accessed on virtual disk target
by VMs at life cycle stage for multiple VMs of the same type can
be calculated using Formula 2. N(x) is the VM arrival rate and
indicates the number of VMs arriving at time x(wherex ≤ t).
For each group of N(x) VMs that arrive at time x, Estage,target(t)
describes the expected number of I/Os for these VMs at time t. In
other words, it tells how many I/Os arrive at target from VMs in
stage at time t. For all VMs that are now in stage at time t, their
arrival time must fall into a prior time interval [t1, t2] determined
by the amount of time needed for each stage and where t2 ≤ t.
We calculate how much data is read or written by VMs currently
in stage that arrived at any time point in [t1, t2] and add them
together to obtain the overall amount of data accessed on virtual
disk target by VMs in life cycle stage at a given time t. The other
parameters are the same as the single VM model.

t2∑
x=t1

[N(x)×
∑
i

(Estage,target(t)× dt×RWperstage,target

× Si
stage,target × Psizeistage,target)]

(2)

Here we take one virtual disk as an example. Suppose the
target is a primary disk, and we want to calculate the amount of
data read from this target at time t. According to Table 1, linked
clones access a primary disk in the boot, login, and steady state
stages. Therefore, the data accesses should be the combination of
three parts: I/Os from VMs in the boot process, I/Os from VMs in
the login process, and I/Os from VMs in steady state. I/Os from
VMs in the boot process at time t can be calculated by

5

t∑
x=t−t0

[N(x)×
∑
i

(Eboot,primary(t)× dt×RWperboot,primary

× Si
boot,primary × Psizeiboot,primary)]

(3)

Here we assume each of these VMs of the same type takes
t0 time units (e.g., seconds) to finish issuing I/Os during its
entire boot process. VMs that started booting (arrived) during time
interval [t − t0, t] are still in their boot process. For every group
of VMs that arrived at each time point in [t − t0, t], we calculate
how much boot data they read from the virtual disk at time t and
add them together. Similarly, I/Os from VMs in the login process
at time t can be calculated by

t−t0∑
x=t−t0−t1

[N(x)×
∑
i

(Elogin,primary(t)× dt×RWperlogin,primary

× Si
login,primary × Psizeilogin,primary)]

(4)

Here we assume VMs of this same type take t1 time units
to finish issuing I/Os during their entire login process. According
to Assumption 2, login follows boot immediately, and there are
no idle intervals. Therefore, VMs that arrived during time interval
[t−t0−t1, t−t0] are in their login process at time t. Finally, I/Os
from VMs in their steady state at time t can be calculated using

t−t0−t1∑
x=start

[N(x)×
∑
i

(Esteady,primary(t)× dt×RWpersteady,primary

× Si
steady,primary × Psizeisteady,primary)]

(5)

Here we assume an initial point in time start when VMs start
to arrive. Any VMs that arrived before t− t0− t1 are now (at time
t) in their steady state.

Since a virtual disk is not accessed during all stages by
all virtual desktops, when calculating the total amount of data
read/written on target at time t, we include only I/Os from appro-
priate virtual desktop types and the stages they are in according to
Table 1. By selecting different targets, we can obtain the amount
of data accessed on all virtual disks. By traversing time t, we can
see how data accessed on a target varies with time. Therefore, we
can estimate when a bottleneck happens on each target.

3.3.2.3 Multiple VMs of Different Types
VMs with different virtual desktop types, operating systems,

and user applications show different I/O behavior. We define a VM
type as VMs running the same type of virtual desktop, the same
type of operating system, and the same user applications. For each
VM type, we apply Formula (2) to calculate how much data are
read from and written to each corresponding target at time t. The
corresponding targets are chosen from Table 1 according to the
virtual desktop type. In a data center, each VM type accounts for
a different proportion of I/Os. When combining them together, we
need to use the weighted proportion of each VM type. According
to Assumption 1, the VM arrival rate is not related to its virtual
desktop type, operating system, and user application. The overall
arrival rate N(x) is the same when calculating each VM type.
Therefore, we can use the weighted average of all VM types to
get the total amount of data accessed.

4 DATA ANALYSIS AND EVALUATION
In order to get correct values of I/O parameters in our model,

we collect boot, login, and steady state traces of different types of
virtual desktops in VDI. We then analyze I/O behavior of virtual
desktops and derive those parameters in our model from the traces.
The storage demands are then generated.

In this section, we first analyze the burstiness of I/Os in order
to describe the expected number of I/Os at time t in our model.
Then we analyze I/O behavior of each virtual desktop type from
traces. Finally, we show a simulation using our model to generate
I/O demands on each target.

4.1 Trace Collection
We collect VDI traces on four 1U Dell r420 servers, each

with two Intel Xeon E5-2407 v1 2.2GHz quad-core processors
and 12 GB of DRAM. Servers are connected to Dell/Compellent
SC8000 storage which has eight 400GB SSDs and 8 600GB
HDDs. In our trace capturing VDI environment, we have VMware
vSphere Hypervisor (ESXi) 5.5.0 installed on four servers to form
a cluster. We use vCenter Server 5.5 Update 1 as the cluster
manager. The VDI product installed is VMware Horizon View
6.0. Windows 7 x64 is used as the desktop OS. To capture traces
of different clone types, we set up floating assigned linked clone
pools, dedicated assigned linked clone pools and full clone pools.
In this environment, any I/Os generated by a virtual desktop go
through the hypervisor (ESXi) first and then go to the physical
storage. To capture block traces, a common method is running
blktrace at the host machine. Unfortunately, ESXi is a commodity
hypervisor so we cannot install or run blktrace on it. Instead, we
use a different method. We setup an NFS server to provide storage
to the virtual desktops. We mount multiple volumes on this NFS
server and configure them as data stores of ESXi servers. Through
this configuration, we can choose to put virtual disks in the data
stores presented by this NFS server when creating virtual desktop
pools. At the NFS side, we run blktrace on multiple volumes
to collect block traces. By analyzing the block traces collected
from different volumes, we are able to analyze the I/O behavior of
different virtual desktops.

Since NFS just transmits the original file I/Os to VMDK
(Virtual Machine Disk) from ESXi hosts to the NFS server, the I/O
patterns in traces collected from ESXi (if we could) should be the
same as those in traces collected from our NFS server. Using this
setup, we collect traces of virtual desktops at their boot and login
stages. During the steady state stage, the workload depends on the
real user application behavior. Here we run VMware View Planner
3.5 [16] as a workload generator to generate steady state workload.
The applications include Adobe Reader, Excel, Internet Explorer,
PowerPoint, and Word. VMware View Planner executes open,
read, write, save, and close operations using these applications
to simulate a real real-life workload. We set the workload to pause
randomly for between zero and 10 seconds between operations. In
this way, we generate light or medium load during a steady state.

4.2 Burstiness of Requests
Figure 3 depicts the inter-arrival time of I/Os of a floating

linked clone from the traces. For those sparse requests whose
inter-arrival time is greater than 50ms, we simply truncate them to
50ms. The coefficients of variation of the inter-arrival time from
(a) to (d) in Fig. 3 are 13.61, 8.15, 8.72, and 3.57 respectively.
A higher coefficient of variation indicates more bursty arrival
patterns. In addition, it is also obvious that data points are
aggregating at some time points rather than evenly distributing

6

0 10 20 30 40
Time (s)

0

10

20

30

40

50

60

In
te

r-
ar

ri
va

l T
im

e
(m

s)

(a) Boot on Replica

0 10 20 30 40
Time (s)

0

10

20

30

40

50

60

In
te

r-
ar

ri
va

l T
im

e
(m

s)

(b) Boot on Primary Disk

0 10 20 30 40
Time (s)

0

10

20

30

40

50

60

In
te

r-
ar

ri
va

l T
im

e
(m

s)

(c) Login on Primary Disk

0 10 20 30 40
Time (s)

0

10

20

30

40

50

60

In
te

r-
ar

ri
va

l T
im

e
(m

s)

(d) Login on NAS

Fig. 3: Inter-arrival Time of I/Os of a Floating Linked Clone

across time. This also indicates that I/Os on all targets are bursty.
Other clone types show similar bursty features. Thus, it is not
appropriate to describe the expected number of I/Os at time t
by statistical models, like the famous Poisson Process. Since the
actual arrival pattern happens during a very short time interval (µs)
and we are only interested in measuring I/Os in terms of seconds,
we can simply assume that requests arrive uniformly within bursts
and include this burstiness in our model. The expected number of
I/Os at time t, if t falls into a burst, is the average number of I/Os
per time unit during the interval of that burst. Otherwise, when t
is outside of a burst, the expected I/O count is zero.

4.3 Single Virtual Desktop Analysis
In this subsection, we analyze the I/O behavior of a single

virtual desktop from traces. The traces include the I/O requests
sent to different targets by different types of virtual desktops in
boot, login ,and steady state stages.

4.3.1 Floating linked clone
During the boot process of a floating linked clone, reads are

dominant on the replica, accounting for 99.8% of total I/Os on
the replica. The total amount of data read is 188MB. To the
contrary, writes become dominant on the primary disk, accounting
for 99.9% of total I/Os on the primary disk. The total amount
of data written is 20MB. This is because when a floating linked
clone is booting, it needs to load OS data from the shared replica
first. Some of this data is written into the primary disk for future
use. During the login process, I/Os happen on the primary disk
and NAS. On the primary disk, reads account for 22.7% and
writes account for 77.3% of disk activity. On the NAS, reads
account for 69.5% and writes account for 30.5 of I/OsIn this
process, the user profile needs to be loaded from NAS to enable
identity authentication and desktop configuration. Some of these
data are written into primary disk for future use. Other applications
involved during the login process may also write to the primary
disk.

4.3.2 Dedicated linked clone
The boot process of a dedicated linked clone is quite different

from a floating linked clone. Dedicated linked clones preserve
data in primary disks after users log off rather than reload data
for every instance as is done with floating linked clones. In most
cases, dedicated linked clones do not need to load OS data again
from a replica during the boot process. Loading OS data into the
primary disk only happens the first time a fresh desktop is booted.
Here we only consider the most general case where primary disks
already preserve OS data. In the traces, we find boot I/Os only go
to primary disks. Dedicated linked clones utilize persistent disks
to preserve user profiles and user data. Therefore, I/O behavior
of dedicated linked clones during login are different from floating

linked clones. Some I/Os are now shifted to the persistent disk, and
the number of I/Os accessing NAS is reduced. This is because we
do not need to load as much data from NAS to the primary disk
when users log in, since the data are already there in persistent
disk. We can directly read user profiles from the persistent disk to
proceed with the login process. On the primary disk, reads account
for 48.9% and writes account for 51.1%. On the persistent disk,
reads account for 24.6% and writes account for 75.4%. On the
NAS, reads account for 32.2% and writes account for 67.8%.

4.3.3 Full clone
In a full clone, I/Os are aggregated in one type of virtual

disk. During the boot process, reads account for 42.2% and writes
account for 57.8%. During the login process, reads account for
69.0% and writes account for 31.0% of I/Os.

4.4 Multiple Virtual Desktops
With traces collected for each type of virtual desktop, we can

now aggregate multiple virtual desktops together. We do exper-
iments to simulate multiple virtual desktops arriving at different
times and see how the I/Os on each target vary with time.
Experiment Setup. We assume a company uses VDI for its
employees and has 5,000 virtual desktop instances. Without loss of
generality, we assume the arrivals of employees follow a Poisson
distribution and the arrival rate is 10 per second. In order to
aggregate I/Os of VMs at different stages in Formula 2, we use
the parameters derived from the traces in the model. Other users
of our model can add their own customized virtual desktop types
and VM arrival rate to get their own results. In the following
subsections, we show how much data is accessed on each virtual
disk at any time since the first user arrives under four scenarios:
1) they uses all floating linked clones, 2) they use all dedicated
linked clones, 3) they use all full clones, 4) they use a mixture of
different clones.

4.4.1 Floating linked clones
If we assume this company prefers that employees share virtual

desktops as much as possible in order to reduce license costs
(Windows, VMware, etc.), it may use all floating linked clones.
Figure 4 shows the amount of data accessed on each of the
targets from when the first floating linked clone arrives to when
all floating linked clones have transitioned to steady state.

On the replica, as seen in Figure 4(a) the I/Os are read
dominant and quite heavy. The rate of data read rises sharply
to around 2.8 GB/s within the first 30 seconds. In the next 500
seconds, the workload is relatively stable and stays around 3 GB/s
with a peak of 3.3 GB/s. Once all virtual desktops have arrived
and their boot processes are completed, the I/Os start to drop
dramatically within the final 20 seconds. Overall, replica disk
activity is read intensive for floating linked clones. Unlike the

7

0

500

1000

1500

2000

2500

3000

3500

11 61 111 161 211 261 311 361 411 461 511

S
iz

e
(M

B
)

Time (s)

Read Write

(a) Replica

0

100

200

300

400

500

600

700

3 53 103 153 203 253 303 353 403 453 503 553 603 653

S
iz

e
(M

B
)

Time (s)

Read Write

(b) Primary Disk

0

20

40

60

80

100

45 95 145 195 245 295 345 395 445 495 545

S
iz

e
(M

B
)

Time (s)

Read Write

(c) NAS

Fig. 4: Amount of Data Accessed on Targets of 5,000 Floating Linked Clones

0

100

200

300

400

500

2 52 102 152 202 252 302 352 402 452 502 552

S
iz

e
(M

B
)

Time (s)

Read Write

(a) Primary Disk

0

50

100

150

200

250

300

350

56 106 156 206 256 306 356 406 456 506 556 606 656
S

iz
e

(M
B

)
Time (s)

Read Write

(b) Persistent Disk

0

2

4

6

8

39 89 139 189 239 289 339 389 439 489 539

S
iz

e
(M

B
)

Time (s)

Read Write

(c) NAS

Fig. 5: Amount of Data Accessed on Targets of 5,000 Dedicated Linked Clones

replica, the I/Os on the primary disk in Figure 4(b) are more
balanced as it is accessed during all stages. However, it still
sees a large volume of I/Os with data rates in the hundreds of
megabytes per second for reads and writes. As shown in Figure
4(c), the amount of data accessed on NAS is quite small. If more
applications are installed and more user data is generated, NAS
activity will increase.

From this simulation, we obtain the detailed storage require-
ments of a floating linked clone as listed in Table 2.
4.4.2 Dedicated linked clones

If we assume this company wants to reduce license costs and
at the same time employees are inclined to have dedicated virtual
desktops, it may use all dedicated linked clones. Figure 5 shows
the amount of data accessed on each of the targets from when the
first dedicated linked clone arrives until all dedicated linked clones
have transitioned to steady state.

The I/Os on the primary disk of the dedicated linked clones,
as seen in Figure 5(a), are much lighter than those of the floating
linked clone. Once all VMs finish their boot and login stages, the
I/Os on the primary disk are minimal. On the persistent disk, as we
see in Figure 5(b), reads and writes mainly rise during the login
stage and drop to a minimum amount in the steady state. Figure
5(c) shows I/Os on NAS.

Detailed storage requirements of a dedicated linked clone
based on this simulation are listed in Table 3.
4.4.3 Full clones

If we assume this company wants to avoid the complexity of
server and storage configurations caused by linked clones, it may
use all full clones. Figure 6 shows the amount of data read and
written on the full clone disk. We can see the total amount of data
read is much greater than the total amount of data written. There
is an obvious stage of high I/Os where VMs are in their boot and
login stage. The I/Os drop suddenly when all VMs finish booting
and then gradually decline to the minimum as the VMs transition
to steady state.

Detailed storage requirements of a full clone obtained from
this experiment are listed in Table 4.

0

500

1000

1500

2000

12 62 112 162 212 262 312 362 412 462 512 562 612 662

S
iz

e
(M

B
)

Time (s)

Read Write

Fig. 6: Amount of Data Accessed on Target of 5,000 Full Clones

TABLE 2: Requirements of a Floating Linked Clone

Replica Primary NAS
R W R W R W

Average KB/s 497.50 0.044 50.69 93.37 13.45 0.89
Capacity per VDI user if thin provisioned: 4GB.
3 shared replicas: 75GB
Shared NAS: 1TB

TABLE 3: Requirements of a Dedicated Linked Clone

Primary Persistent NAS
R W R W R W

Average KB/s 16.69 62.59 48.02 45.43 0.98 0.90
Capacity per VDI user if thin provisioned: 12GB.
3 shared replicas: 75GB
Shared NAS: 1TB

TABLE 4: Requirements of a Full Clone

Full Clone Disk
R W

Average KB/s 238.07 71.22
Capacity per VDI user if thin provisioned: 12GB.

4.4.4 A mixture of different clones
Now assume this company has various needs regarding virtual

desktops. First of all, it does not want to pay high license
costs, hence most virtual desktops are linked clones. Also, most

8

0

100

200

300

400

500

11 61 111 161 211 261 311 361 411 461 511

S
iz

e
(M

B
)

Time (s)

Read Write

(a) Replica

0

100

200

300

400

2 52 102 152 202 252 302 352 402 452 502 552 602 652

S
iz

e
(M

B
)

Time (s)

Read Write

(b) Primary Disk

0

50

100

150

200

56 106 156 206 256 306 356 406 456 506 556 606 656

S
iz

e
(M

B
)

Time (s)

Read Write

(c) Persistent Disk

0

5

10

15

20

25

39 89 139 189 239 289 339 389 439 489 539

S
iz

e
(M

B
)

Time (s)
Read Write

(d) NAS

0

20

40

60

80

100

120

140

13 63 113 163 213 263 313 363 413 463 513 563 613 663

S
iz

e
(M

B
)

Time (s)
Read Write

(e) Full Clone Virtual Disk

Fig. 7: Amount of Data Accessed on Targets of a Mixture of Clones

employees require exclusive use of virtual desktops, so most of
the linked clones are dedicated linked clones. Finally, there is
a small department developing software tools that require high
performance. To avoid the configuration complexity and degraded
performance of linked clones, a small number of full clones are
provided. According to this scenario, we evaluate a combined ratio
of 3:6:1 for floating linked clones to dedicated linked clones to full
clones. Figure 7 shows the amount of data read and written on the
replica, primary disk, persistent disk, NAS, and full clone virtual
disk in this mixed configuration.

The I/Os on the replica arise from the boot of floating linked
clones. The amount of data accessed shows a similar pattern as
Figure 4(a). Since the number of floating linked clones is only 30%
of the 5,000 virtual desktops, there are fewer I/Os than there were
in the 5,000 floating linked clone case. Compared with dedicated
linked clones (Figure 5(a)), , floating linked clones (Figure 4(a))
have more intensive I/O accesses on the primary disk. The pattern
of data accessed on primary disk in this mixed case (Figure 7(b))
is similar to the floating linked clone case. However, the total
amount of data accessed is smaller. The persistent disk (Figure
7(c))is exclusively accessed by the dedicated linked clones, so its
I/O pattern is similar to Figure 5(b). Although dedicated linked
clones access NAS (Figure 7(d)), the I/Os are reduced a lot due to
the existence of the persistent disk. Therefore, the I/O pattern on
NAS is similar to that of the floating linked clones (Figure 4(c))
but with a smaller total data amount. Finally, the full clone virtual
disk (Figure 7(e)) is only influenced by full clones, so it shows the
same pattern as in Figure 6 with a proportional reduction in data
trasferred.

4.5 Validation
In order to evaluate the correctness of our model, we compare

the I/O requirements we generate from our model with experimen-
tal results from real Hewlett Packard Enterprise (HPE) systems.
Two experiments are done by running virtual desktop workloads in
two different environments in HPE 3PAR. In the first environment,
three HP Proliant BL460c Gen8 servers run the VDI workload.
Each server has two Intel Xeon 2.9GHz, octa-core CPUs and
128GB of memory. One HPE 3PAR StoreServ 7450 is used as VDI
storage. It has 24 920GB MLC SSDs and 8Gbps Fibre Channel

TABLE 5: I/Os on HP 3PAR StoreServ 7450

User Count Max IOPS Max IOPS
per user

Max Reads
per second

Max Writes
per second

512 71168 139 64051 7117
1056 146784 139 132195 14589
1504 209056 139 188150 20906
2016 280224 139 252202 28022

TABLE 6: I/Os on HP StoreVirtual 4335

User Count Max IOPS Max IOPS
per user

Max Reads
per second

Max Writes
per second

148 20513 139 18462 2051
211 29329 139 26396 2932
318 44202 139 39781 4420
537 74643 139 67178 7465

SAN connectivity. 40 volumes are provisioned for testing, each
of which has 125GB of capacity. In the second environment, two
HP ProLiant DL560 Gen8 servers run the VDI workload. Each
server has four Intel Xeon 2.7GHz octa-core CPUs and 256GB of
memory. One HPE StoreVirtual 4335 is used as VDI storage. It
has nine 400GB MLC SSDs, 21 900GB 10K RPM SAS HDDs,
and 10Gbps iSCSI SAN connectivity. 12 volumes are provisioned
for testing, each of which has 125GB of capacity.

In both environments, VMware vSphere 5.1 and vCenter
Server 5.1 are the deployed hypervisor and cluster manager.
IOmark-VDI [4] is used as a benchmark tool. This tool re-creates a
VDI environment automatically. The created virtual desktops run
Windows 7 x64 as the guest OS. The tool generates a workload
of boot stage and steady state stage linked clones. Since IOmark-
VDI does not provide a login stage workload, we only evaluate
our simulated results in the boot stage and steady state stage.

The tested results in the first and second environment are
shown in Tables 5 and 6, respectively. In the experiments, different
numbers of floating linked clones are booted at the same time.
During steady state, the ”Standard” workload is running. From
these tables, we can see the peak IOPS per virtual desktop, which
occurs during the boot stage, is 139 regardless of the testing envi-
ronment as long as there are enough system resources. The peak

9

read IOPS is around nine times of the peak write IOPS. During
steady state, the average IOPS is 6.26. In our model comparison
experiment, we simulate multiple floating linked clones arriving
at the same time by applying our model. We set the arrival rate
of virtual desktops to match the total number of virtual desktops
from the HPE system tests. We find the peak IOPS per virtual
desktop is 141 and the peak read IOPS is 8.8 times the peak write
IOPS. During steady state, the average IOPS is 7.01. Given these
results, we conclude that the simulation based on our model is able
to reflect the real workload characteristics from the HPE testing
results.

5 APPLICATION OF PROPOSED MODEL
In this section, we show how to apply our model in real

life. We identify more fine-grained storage requirements of a
VDI system and compare them with the storage performance
requirements provided by VMware. Then we show what storage
system is needed to deploy such a VDI system.

5.1 Fine-grained Storage Requirements
We first show we can find more accurate and fine-grained

storage requirements of a VDI system. We calculate the IOPS
demand on each type of virtual disk of different virtual desktops
by applying the traces as inputs into the model.

To assist administrators when they are determining the re-
sources necessary to support VDI, VMware has given IOPS re-
quirements as a rule of thumb [19] as shown in Table 7. It classifies
users based on their IOPS requirements. However, we know dif-
ferent types of virtual desktop have different storage requirements,
and for the same type of virtual desktop, the storage requirement
of each virtual disk is also different. The VMware guidance based
on rules of thumb does not describe these differences in detail.
With our model, we can easily calculate the average IOPS of
each target of each virtual desktop type, as shown in Table 8,
based on the required read and write throughput of each virtual
desktop and the significant I/Os in the traces. We also give the
corresponding classification of storage requirements at the virtual
disk granularity for each virtual desktop type. In our VDI traces,
all virtual desktops run light or medium load jobs like reading
PDF files or editing Word, Excel, and PowerPoint documents, so
they should be characterized as Light or Medium. We can see
in Table 8 that the storage requirements of all virtual disks of our
virtual desktops are in the Light and Medium classes. Thus,
our model is useful and able to describe more fine-grained storage
requirements of virtual desktops in a VDI environment.

TABLE 7: VDI IOPS Requirements from VMware

User Classification IOPS Requirements Per User
Light 3-7
Medium 8-16
Standard 17-25
Heavy 25+

TABLE 8: Average IOPS on Each Target of Each Virtual Desktop

Floating Linked Clone Dedicated Linked Clone Full Clone
Replica Primary NAS Primary Persistent NAS Full Clone Disk
5.45 12.25 0.61 5.27 8.26 0.22 9.52
Light Medium Light Light Medium Light Medium

IOPS is widely used in industry to describe storage require-
ments and capabilities. VMware uses IOPS to guide the VDI stor-
age sizing. For example, they use the IOPS in Table 7 to calculate

the performance requirement for each LUN (logical unit number,
used to identify a device or a logical disk) when determining the
storage hardware necessary for VDI. However, only considering
IOPS is less than adequate. As seen in Section 4, the amount of
data read per second from the replica can be very large during boot
time. However, the average IOPS on the replica listed in Table 8
does not show this information. If storage is allocated to the replica
based on that Light IOPS classification, users could experience
long latency during boot time. Thus, throughput and read/write
ratio should also be considered when allocating storage for VDI.
Fortunately, our model can provide this type of information and
can guide administrators to an even more fine-grained storage
configuration. Our model can show the storage requirements like
storage capacity and throughput on each target directly and how
they vary with time. In addition, some VDI users have response
time requirements. We can find the expected response time of
various storage systems by combining the expected IOPS from
our VDI model with the Response Time/Throughput relationship
shown in benchmark results provided by the SPC (Storage Perfor-
mance Council, they have extensively tested many storage systems
and freely provide plots of response time given IOPS for each
system) [11], [12].

5.2 Sizing Storage Hardware for Specific VDI Require-
ments

When we decide how much storage hardware we need, we can
first look at the VMware guidance [15] which considers IOPS and
storage capacity. Then we add more dimensions by considering
the distinct I/O access patterns in terms of read/write ratio and
throughput on different types of virtual disks. For example, assume
we are sizing storage for a company that uses VDI for its
employees across three time zones. In each time zone, it deploys
5,000 floating linked clones and the I/O access patterns of these
virtual desktops are the same as the example in Section 4.4. We are
going to buy one of the storage systems from Table 9. The prices
of the storage systems in the table increase as the performance
improves. We are going to choose the cheapest storage system
that can meet the storage requirements of the VDI system.

We can first consider the I/Os during steady state, as it is
only determined by user behavior. If employees in this company
generate a standard IOPS, e.g. 8 IOPS per user, then we need a
storage system that can support 8× 5000× 3 = 120, 000 IOPS.
In this case, HP 3PAR T400 may be a good choice. Then we
should consider the I/Os during the boot and login stage, which
are less user related and more determined by the virtual desktop
type itself. Since these 5,000 virtual desktops finishes booting and
login within a small time period according to Section 4.4, I/Os
during boot and login stages from different time zones do not
overlap. But they occur periodically. According to our model, as
described in Section 4, we know the rate of data read on replica
will keep around 3 GB/s and rise to 3.3 GB/s at maximum. The
primary disk will see a stable read rate of 350 MB/s and stable
writes at 600 MB/s. The remote repository will stay at 70 MB/s
of reads. We consider the most intensive I/O access period here
in order to give the best guarantee. In total, this company will see
approximately 4 GB/s of sustained data access periodically. The
total capacity requirement can also be calculated to be 66 TB.
Therefore, we need a storage system that has at least 4 GB/s of
throughput and 66 TB of capacity. In this case, HP 3PAR T400
cannot meet this throughput requirement, and the HP 3PAR T800
may be a good choice.

10

TABLE 9: Specifications of 4 HP 3PAR Storage Systems

HP 3PAR Storage F200 F400 T400 T800
Max Throughput 1300 MB/s 2600 MB/s 2800 MB/s 5600 MB/s
Max IOPS 46,800 93,600 128,000 256,000
Max Capacity 128 TB 384 TB 400 TB 800 TB

Drive Types
50GB SSD
300 & 600 GB FC
2TB NL

50GB SSD
300 & 600 GB FC
2TB NL

50GB SSD
300 & 600 GB FC
2TB NL

50GB SSD
300 & 600 GB FC
2TB NL

If we inspect the I/O throughput on each virtual disk, we
can find most of the load is on the replica and the throughput
requirement on the primary disk and remote repository is not
that high. Therefore, we can deploy different targets on different
storage, and we suggest using tiered storage to satisfy the storage
requirements with minimum cost. We know there is a high
throughput requirement on replicas, and I/Os are read dominant,
so it is a perfect match to deploy replicas on SSDs. We call
this group of SSDs Tier-1 storage. Compared with the replica,
I/Os on the primary disk are more balanced. Considering that the
workload is more write intensive on the primary disk, SSDs do
not help as much (assuming SSD writes are slower than SSD
reads). To save money, we can place primary disks and the remote
repository on HDDs. For better performance, we can use high
performance HDDs, e.g., 15K RPM HDDs. We call these HDDs
Tier-2 storage. In this case, we can configure an HP 3PAR T800
into tiered storage, which is able to migrate data between tiers
automatically to reduce the number of disks needed. Therefore, in
order to satisfy the storage requirements of this company’s 5,000
floating linked clones, we suggest buying an HP 3PAR T800 and
configuring it as tiered storage to reduce cost.

6 DISCUSSION AND FUTURE WORK

Current VDI design is built on virtual machines. Recently,
a lightweight virtualization technology call containers [5], [22]
has become widely accepted in industry. Applications can run in
containers just like in traditional VMs. Containers on the same
host will share the same operating system kernel. Each container
can have its own libraries, binaries, and namespace. They are
segrated on the same host. From the host’s point of view, each
container runs as a process. On the other hand, VMs run on the
hypervisor, a specialized OS, upon which each VM will run a full
copy of an operating system. Consider a situation where existing
resources cannot meet the storage requirements of VDI (e.g., if
the company in the previous section where using an HPE 3PAR
F400 to run 5,000 floating linked clones). Instead of suggesting an
immediate hardware upgrade, we are exploring a possible remedial
solution to migrate virtual desktops from VMs to containers, e.g.,
Docker containers [2], [31]. We will now present some preliminary
results and analysis of this idea.

We first collect traces of a virtual desktop built on a Docker
container. Booting such a virtual desktop is the process of creating
and running a new Docker container. During the boot stage, a
total of 18.09 MB of reads and 7.85 MB of writes are generated
to boot the container. The reads are mainly due to loading OS
data, the Docker daemon and runC (underlying Docker runtime
technology) [8]. The writes during boot mainly come from adding
a writable ”container layer” on top of underlying image layers. In
this virtual desktop implementation, the application is configured
to run immediately after the container is up. The application inside
this container generates 80.08 MB of reads during boot. It is
obvious that reads and writes during the boot stage of a virtual

desktop inside a container are far fewer than those of a floating
linked clone. This is because booting a container is exactly the
process of forking a process on the host. There is no need to load
all OS data from replicas as floating linked clones. Writes are
only for writing the thin writable container layer. In addition, all
read I/Os are eliminated during subsequent boots from that virtual
desktop because the OS caches the data, and containers share the
system cache with the host.

The login stage of virtual desktops inside containers has
similar I/O patterns as in VMs. It reads user profiles to authenticate
users and configure desktop settings. User profiles can be stored
in a local Docker union file system or in volumes provided
by underlying storage. According to the current virtual desktop
implementation in containers, all user profiles are permanently
stored. There is no need to first load them from a remote reposi-
tory.

Therefore, it is worthwhile to consider replacing some of the
floating linked clones in VMs with virtual desktops using Docker
containers in the situation we are looking at. First, virtual desktops
in containers can maintain the flexibility of floating linked clones.
In our experiments, it only takes 1.45 seconds for the Docker
daemon and runC to finish booting a virtual desktop in a container,
while it takes 39.80 seconds to boot a floating linked clone in
a VM. This nearly instant boot time makes deleting a virtual
desktop after a user logs off and booting another when a user
logs in cost far less than the same process using floating linked
clones in VMs. Second, during the boot process, there are far
fewer reads and writes than when using floating linked clones.
If it is not the first time running a virtual desktop, data are
already cached, and reads can be eliminated. While containers
have advantages over VMs, virtual desktops using containers are
not yet as mature as using VMs, and only some independent open
source projects can be found. Containers themselves also have
security limitations as containers share the same OS. Containers
also do not support data persistence as well as VMs do, but storage
companies are working on this issue. Docker is open source and
under rapid development, so the acceptance of virtual desktops
using containers will continue to increase.

7 RELATED WORK

7.1 VDI and Its Enhancement

Currently, there are multiple VDI solutions such as VMware
Horizon View [13], Microsoft Virtual Desktop Infrastructure [1],
RedHat Enterprise Virtualization (RHEV) VDI [7] and Citrix Xen
[20]. No matter which solution is chosen, storage performance is
a big hurdle. VMware stated that over 70% of performance issues
are related to storage. There are multiple storage solutions aiming
to improve storage performance for VDI. VMware uses content-
based read cache(CBRC) [14] to improve performance by caching
common disks in the ESX host server. Unlike VMware CBRC,
which restricts cache access to the same host, Infinio builds a

11

distributed version of host side cache [3]. Another solution from
PernixData utilizes server flash to accelerate VDI performance [6].

7.2 VM Characterization and Storage Requirements
I/O workload characterization [23], [25], [28], [33], [34] has

been an important topic for storage researchers. Traditionally, the
I/O workloads are collected from physical servers. Recently, more
and more researchers have focused on the uniqueness of VM
workloads. Tarasov et al. studies the extent to which virtualization
is changing existing NAS workloads [35]. Gulati et al. presents
a workload characterization study of three top-tier enterprise
applications using the VMware ESX server hypervisor [26]. There
are also characterizations based on other workloads including
cloud backends. Mishra et al. try to characterize the workload of
Google compute clusters [32]. Their goal is to classify workloads
in order to determine how to form groups of tasks (workloads)
with similar resource demands. Although these studies have some
characterization of VM I/O behavior, they do not quantify I/O
demands from the perspective of satisfying storage requirements.

Most of the studies trying to provide methods of meeting
VM requirements overlook the characteristics of the VM storage
requirements. Gulati et al. [27] do study how to improve I/O
performance of VMs, but they only use Iometer to generate some
workloads, thus cannot fully represent the storage requirements
of VMs. Le Thanh Man et al. [30] study how to minimize the
number of physical servers needed while ensuring Service Level
Agreement (SLA) requirements. They place the virtual desktops
whose access patterns have low correlation coefficient on the same
servers, so the opportunity for CPU contention in the same servers
is low. However, they mainly focus on CPU. The storage in VDI
has its own characteristics and configurations, thus requiring a
special discussion.

The manuals of commercial VDI products and the underlying
storage are based on either rules of thumb to guide storage provi-
sioning [19] or test the performance of their storage array given a
fixed number of VDI instances [10]. Some products specifically try
to meet VM storage requirements. VMware’s vSAN [18] is such a
product, and VMware has already integrated it with vSphere [17].
vSAN shows the available storage capabilities and claims they
can be used to handle the storage requirements of VMs. When
deploying VMs, administrators choose among existing storage and
place VMs into the selected storage. However, such a description
of VM storage requirements using storage capabilities can be
inaccurate.

Another product that tries to meet VM storage requirements
is Common Provisioning Group (CPG) [21] from HPE. It pools
underlying physical devices into a unified storage pool called a
CPG. VMs can draw resources from CPGs, and volumes are
exported as logical unit numbers (LUNs) to hosts. CPG gives a
detailed organization of the underlying storage. It tries to meet
storage requirements of VMs by organizing underlying storage
resources, but not from the VM perspective.

8 CONCLUSIONS
In this paper, we create a model to identify the storage

requirements of one prevalent virtual machine type, VDI. We
populate the parameters of our proposed model with real traces.
Using our model, we demonstrate an example of how data accesses
vary with time on different virtual disks for different types of
virtual desktops. We further validate the usefulness of our model
and show we can identify more accurate and fine-grained storage
requirements of VDI than current industry methods. Based on the

storage requirements identified and the bottlenecks determined,
we are able to better guide administrators in their configuration of
a storage system to meet the storage requirements with minimum
resources.
Acknowledgment: We thank Jim Diehl for reviewing and revising
the paper. This work is partially supported by the following NSF
awards: 1305237, 1421913, 1439622 and 1525617.

REFERENCES
[1] Desktop virtualisation. https://www.microsoft.com/en-in/

cloud-platform/desktop-virtualization. Accessed: 2017-10-01.
[2] Docker documentation. https://docs.docker.com/. Accessed: 2017-8-14.
[3] Infinio. http://www.infinio.com/. Accessed: 2017-9-29.
[4] Iomark workloads. http://www.iomark.org/content/workloads. Accessed:

2018-3-31.
[5] Lxc. https://help.ubuntu.com/lts/serverguide/lxc.html. Accessed: 2017-

9-29.
[6] Optimize vdi with server-side storage acceleration. http://pernixdata.

com/sites/default/files/resources/PernixData Optimize VDI WP 0.pdf.
Accessed: 2017-9-29.

[7] Red hat enterprise virtualization for desktops. https://www.redhat.com/f/
pdf/rhev/RH WP RHEVDesktops web.pdf. Accessed: 2017-9-29.

[8] runc. https://github.com/opencontainers/runc. Accessed: 2017-8-14.
[9] Server and storage sizing guide for windows 7 desktops in

a virtual desktop infrastructure. https://www.vmware.com/
content/dam/digitalmarketing/vmware/en/pdf/technicalnote/view/
server-storage-sizing-guide-windows-7-technical-note.pdf. Accessed:
2017-9-29.

[10] Sizing and best practices for deploying vmware view 5.1 on vmware
vsphere 5.0 u1 with dell equallogic storage. http://en.community.dell.
com/dell-groups/dtcmedia/m/mediagallery/20219029/download. Ac-
cessed: 2017-9-29.

[11] Spc-1 and spc-1e benchmark results. http://spcresults.org/benchmarks/
results/spc1-spc1e. Accessed: 2018-3-18.

[12] Spc benchmark 1/energy extension official specification. http://www.
storageperformance.org/specs/SPC-1 SPC-1E v1.14.pdf. Accessed:
2017-10-01.

[13] Vdi virtual desktop infrastructure with horizon. https://www.vmware.
com/products/horizon-view. Accessed: 2017-10-01.

[14] View storage accelerator in vmware view
5.1. https://www.vmware.com/files/pdf/techpaper/
vmware-view-storage-accelerator-host-caching-content-based-read-cache.
pdf. Accessed: 2017-10-01.

[15] Vmware horizon 6 storage considerations. https://www.vmware.
com/content/dam/digitalmarketing/vmware/en/pdf/techpaper/
vmware-horizon-view-mirage-workspace-portal-app-volumes-storage.
pdf. Accessed: 2017-10-01.

[16] Vmware view planner installation and user’s guide.
https://my.vmware.com/web/vmware/details?downloadGroup=
VIEW-PLAN-300&productId=320. Accessed: 2017-9-29.

[17] Vmware vsphere. https://docs.vmware.com/en/VMware-vSphere/index.
html#com.vmware.vsphere.doc/. Accessed: 2017-10-01.

[18] vsan. https://www.vmware.com/products/vsan.html. Accessed: 2017-10-
01.

[19] Vmware virtual san design and sizing guide for horizon view
virtual desktop infrastructures. https://www.vmware.com/content/
dam/digitalmarketing/vmware/en/pdf/whitepaper/products/vsan/
vmw-tmd-virt-san-dsn-szing-guid-horizon-view-white-paper.pdf,
2014. Accessed: 2017-10-01.

[20] Citrix virtual desktop handbook 7.x. https://support.citrix.com/article/
CTX221865, 2017. Accessed: 2017-9-29.

[21] Hp 3par storeserv storage concepts guide. http://h20564.www2.hpe.com/
hpsc/doc/public/display?docId=c04204225, 2017. Accessed: 2017-9-29.

[22] D. Bernstein. Containers and cloud: From lxc to docker to kubernetes.
IEEE Cloud Computing, 1(3):81–84, 2014.

[23] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross. Understanding and improving computational science storage
access through continuous characterization. ACM Transactions on Stor-
age (TOS), 7(3):8, 2011.

[24] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield. Live migration of virtual machines. In Proceedings
of the 2nd conference on Symposium on Networked Systems Design &
Implementation-Volume 2, pages 273–286. USENIX Association, 2005.

[25] C. Delimitrou, S. Sankar, K. Vaid, and C. Kozyrakis. Accurate modeling
and generation of storage i/o for datacenter workloads. Proc. of EXERT,
CA, 2011.

12

[26] A. Gulati, C. Kumar, and I. Ahmad. Storage workload characterization
and consolidation in virtualized environments. In Workshop on Virtu-
alization Performance: Analysis, Characterization, and Tools (VPACT),
2009.

[27] A. Gulati, C. Kumar, and I. Ahmad. Modeling workloads and devices
for io load balancing in virtualized environments. ACM SIGMETRICS
Performance Evaluation Review, 37(3):61–66, 2010.

[28] W. He, D. H. Du, and S. B. Narasimhamurthy. Pioneer: A solution to
parallel i/o workload characterization and generation. In Cluster, Cloud
and Grid Computing (CCGrid), 2015 15th IEEE/ACM International
Symposium on, pages 111–120. IEEE, 2015.

[29] V. Infrastructure. Vdi server sizing and scaling. http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.134.7129&rep=rep1&type=pdf. Ac-
cessed: 2017-10-01.

[30] C. L. T. Man and M. Kayashima. Virtual machine placement algorithm
for virtualized desktop infrastructure. In 2011 IEEE International
Conference on Cloud Computing and Intelligence Systems, pages 333–
337, 2011.

[31] D. Merkel. Docker: lightweight linux containers for consistent develop-
ment and deployment. Linux Journal, 2014(239):2, 2014.

[32] A. K. Mishra, J. L. Hellerstein, W. Cirne, and C. R. Das. Towards
characterizing cloud backend workloads: insights from google compute
clusters. ACM SIGMETRICS Performance Evaluation Review, 37(4):34–
41, 2010.

[33] C. Muelder, C. Sigovan, K.-L. Ma, J. Cope, S. Lang, K. Iskra, P. Beck-
man, and R. Ross. Visual analysis of i/o system behavior for high-end
computing. In Proceedings of the third international workshop on Large-
scale system and application performance, pages 19–26. ACM, 2011.

[34] S. Sankar and K. Vaid. Storage characterization for unstructured data in
online services applications. In Workload Characterization, 2009. IISWC
2009. IEEE International Symposium on, pages 148–157. IEEE, 2009.

[35] V. Tarasov, D. Hildebrand, G. Kuenning, and E. Zadok. Virtual machine
workloads: the case for new benchmarks for nas. In FAST, pages 307–
320, 2013.

[36] A. Velte and T. Velte. Microsoft virtualization with Hyper-V. McGraw-
Hill, Inc., 2009.

Hao Wen received the BS degree in computer
science and technology from Huazhong Univer-
sity of Science and Technology, Wuhan, China,
in 2013. He is working towards the PhD degree
in computer science at the Department of Com-
puter Science and Engineering, University of
Minnesota, Twin Cities. His research focuses on
storage QoS, software defined storage, Docker,
Kubernete and data deduplication.

David H.C. Du is currently the Qwest Chair Pro-
fessor in Computer Science and Engineering at
the University of Minnesota-Twin Cities and the
Director of the NSF I/UCRC Center for Research
in Intelligent Storage (CRIS). He received his
B.S. from National Tsing-Hua University (Tai-
wan) in 1974, M.S. and Ph.D. from University of
Washington, Seattle in 1980 and 1981 respec-
tively. His current research focuses on intelligent
and large storage systems, cyber-physical sys-
tems, and vehicular/sensor networks. He is an

IEEE Fellow (since 1998) and serves on editorial boards of several inter-
national journals. He was a Program Director (IPA) at National Science
Foundation (NSF) CISE/CNS Division from 2006 to 2008. He has served
as Conference Chair, Program Committee Chair, and General Chair for
several major conferences in database, security and parallel processing.

Milan Shetti is currently the General Manager
at Storage Division of Hewlett Packard Enter-
prise since December 2017. He was the Chief
Technology Officer of Data Center Infrastructure
Group at HPE He has an extensive background
in the storage industry and has contributed to
its industry standardization efforts. He joined
HP as part of HP’s acquisition of IBRIX in late
2009. Prior to this, he served as the President
and CEO of IBRIX, setting strategic direction
and presiding on all day-to-day operations of

the company. Previously at Sun Microsystems, he held a number of
business and technical leadership positions, including Technical Director
for file system and Data Management group in the Network Storage
division.

Doug Voigt is currently the Distinguished Tech-
nologist of Hewlett Packard Enterprise. With
over 30 years experience in HP’s storage busi-
ness he is heavily involved with storage strategy,
architecture and intellectual property. He has
provided technical leadership, organizational
guidance and planning for numerous protocol,
implementation, architecture and advanced de-
velopment projects in disk and disk array product
lines. His career includes 7 years experience in
disk controller protocol development, 17 years

of experience in disk storage management automation, disk array de-
velopment and distributed array architecture. Most recently he has 7
years experience in storage technology and IP evaluation. Highlights of
his contributions include work on Service Oriented Storage, Quality of
Service, IPv6, Storage Utility, Storage Consolidation, Federated Arrays,
HP AutoRAID, Attribute Managed Storage, Disk Controller Fault Toler-
ance, SCSI and other disk protocol standardization and implementation
efforts. He serves as Vice Chairman of Storage Networking Industry
Association. He currently has 25 US patents, primarily in the field of
virtual arrays with 11 patents pending. He holds MS and BS degrees
computer science and electrical engineering respectively from Cornell
University.

Shanshan Li received the MS and PhD degrees
from the School of Computer Science, National
University of Defense Technology, Changsha,
China, in 2003 and 2007, respectively. She was
a visiting scholar at Hong Kong University of
Science and Technology in 2007. She is cur-
rently an assistant professor in the School of
Computer, National University of Defense Tech-
nology. Her main research interests include dis-
tributed computing, social network, and data
center network. She is a member of the IEEE

and the ACM.

