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Abstract
Kubernetes (k8s) is a system for managing containerized

applications across multiple hosts. It offers automatic de-
ployment, maintenance, scaling, and resource management
for applications. Applications in k8s usually have storage
requirements in the form of service-level objectives (SLOs).
However, the current k8s storage management is insufficient
in many aspects. The k8s administrators have to manually
configure storage in advance, and users must know the con-
figurations and capabilities of the provided storage. Users’
storage SLOs can be easily violated in k8s.

In this paper, we design and implement a system, called
k8sES (k8s Enhanced Storage), that efficiently supports ap-
plications with various storage SLOs along with all other
requirements deployed in the Kubernetes environment. We
design and incorporate storage scheduling as part of the node
scheduling process in k8s. Applications will be scheduled
onto correct nodes and storage without intervention from ei-
ther users or administrators. Proper storage resources will
be dynamically carved and allocated to applications based
on users’ storage SLOs. In addition, we provide a tool to
monitor the I/O activities of both applications and storage
devices in k8sES. The evaluation shows that k8sES can better
meet users’ storage SLOs along with other requirements. At
the same time, k8sES can achieve higher resource utilization
efficiency with overhead similar to that of the current k8s.

1 Introduction
The use of Linux containers [9,21] has boomed as many in

industry transition from traditional virtual machines (VMs) to
this light-weight virtualization technology using containers.
For example, Google runs all its software in containers [20].
Linux containers are a virtualization method for running mul-
tiple applications in isolated systems (i.e., containers) on a
host using a single Linux kernel. Linux containers were ini-
tially released in 2008, but their use soared after Docker’s
release in 2013 [4, 34]. Docker is a platform for creating,
deploying, and running applications inside containers. In or-
der to deploy and manage applications in Docker containers

across multiple hosts, people use a container orchestrator to
perform cluster management and orchestration (i.e., selecting
which cluster nodes will host which containers). Kubernetes
(k8s) is one prevalent container orchestrator. In k8s, a pod
is the basic management unit. It includes a container, or a
group of tightly coupled containers, with shared storage and
network resources and a specification for how its containers
should run.

Due to the success and popularity of containers and Ku-
bernetes, various applications running in versatile environ-
ment are moving to containers and Kubernetes. For exam-
ple, applications in traditional data center, private cloud [10],
public cloud [1, 6], edge/IoT [7], etc. In all these different
environment, stateful applications that store, provide and pro-
cess data are critical. When deploying stateful applications,
users usually have service-level objectives (SLOs) on storage
as part of their service-level agreement (SLA) requirements.
In the current k8s, users can specify their requirements on
CPU, memory, affinities to nodes in the cluster or other pods,
etc., in the pod configuration file when deploying a pod. If
users want to specify storage requirements, they can refer to
a StorageClass(SC) which they think can meet their storage
requirements. SC is used to describe the class of a storage. For
example, an administrator may classify the storage resources
into three classes: gold, silver and bronze. StorageClasses
must be pre-created by administrators in the cluster.

The current storage management in k8s has some limi-
tations. First, storage resources are excluded from the host
selection process. The current k8s scheduling process only
selects hosts without considering the storage resources that
each host can access. It assumes the selected host has the con-
nectivity to enough storage resources, which may not be the
case in today’s versatile application environment. Hosts in the
k8s cluster may only have access to a limited number of local
storage or shared storage. Second, SC is static and cannot be
used to efficiently schedule storage resources, since the actual
performance of the storage changes with the utilization of the
storage resources. Third, it is hard to decide a proper number
of SCs that just satisfies users’ requirements without wasting
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resources. If the number of SCs is small, people have few op-
tions and may have to pick SCs that provide more resources
than they want. As the number of SCs in a system increases,
the storage utilization efficiency might improve due to more
user options, but it requires more effort to maintain. Fourth,
modern applications may have advanced storage requirements
such as rate limiting and caching policies [26, 36]. However,
SC does not support these advanced storage requirements. In
addition, from the users’ point view, it takes extra effort to
select a correct SC. More importantly, the SC selection pro-
cess is error-prone, and it may cause storage SLO violations
or wasted storage resources.

Storage resource management has been a research problem
in VM environment for years. For example, Pesto [27] pro-
vides storage management for VMs running on VMware’s
vSphere [18]. But the advancement in VM storage resource
management cannot be easily applied to containers. First,
when placing a VM disk into storage, VMware uses a profile
to describe the storage requirements of a VM. Then, a proper
storage compatible with the VM profile will be selected. This
process is similar to allocating storage by using SC in k8s.
Second, VM storage management systems like Pesto are built
upon Hypervisors [23, 29]. In the container environment, or-
chestration platforms (e.g., Kubernetes, Mesos, and Docker
swarm) perform the role of Hypervisors. Providing a VM
storage management system to k8s must follow the interface
of k8s, and work as a storage provisioner [8], which relies on
SC to describe the storage allocated to users. Therefore, Pesto
will share the same limitations of SC. Third, in Pesto, each
host is connected to the centrally managed storage. A VM can
always access to the allocated storage resources, regardless
which host it is running on, so that Pesto does not select stor-
age in the process of scheduling VMs. This premise imposes
a strong limitation on the application environment. However,
today’s application environment with k8s goes far beyond
the centrally managed storage configuration (e.g., Azure IoT
containers that store data locally [15]). The traditional VM
storage management system cannot treat such various appli-
cation environment, and will face the same issue of missing
storage selection in the host selection process of k8s.

In order to overcome these limitations in the current stor-
age management of k8s, we propose k8sES (k8s Enhanced
Storage), a system that can efficiently support applications
with various storage SLOs along with all other requirements
deployed in the Kubernetes environment. K8sES allows users
to put their detailed storage requirements, including capacity,
bandwidth, sharability, advanced policies, etc., directly in their
configuration files. As a result, no modifications are made to
the universal interface (kubectl create -f 〈mani f est〉), which
is used to create pods. We redesign the current scheduling and
storage allocation mechanisms in k8s, so that it can dynami-
cally allocate storage to applications based on users’ storage
requirements. At initial storage allocation, k8sES will select
appropriate hosts and storage and automatically carve out stor-

age resources to support the running of pods, based on users’
requirements and the performance of each host and storage
at real time. During the runtime of applications, k8sES can
monitor the performance of both pods and storage, and adjust
the storage resource allocation based on the storage SLOs
compliance.

In summary, our key contributions are:

• K8sES overcomes the limitations of k8s in storage man-
agement by providing dynamic storage provisioning to
k8s for the purpose of meeting users’ storage SLOs.

• K8sES improves the storage utilization efficiency in k8s.

• K8sES saves effort for both k8s administrators and users
by improving the complex and error-prone storage allo-
cation mechanisms in the current k8s.

• K8sES provides new monitoring capabilities to monitor
the I/O performance of both pods and storage devices in
k8s.

2 Background and Motivation
2.1 Kubernetes Components

A Kubernetes cluster is composed of master components
and node components. Master components provide a con-
trol plane to the cluster including a front-end for the control
plane (kube-apiserver), a backing store for all cluster data
(etcd), a scheduler that schedules pods (kube-scheduler), and
a controller manager that runs controllers to watch and ensure
the cluster state (kube-controller-manager). Typically, master
components run on the same machine. Node components run
on all nodes in the cluster. On each node, there is a daemon
responsible for creating pods (kubelet), a proxy that forwards
TCP or UDP traffic to the pods (kube-proxy), and a container
runtime (e.g., Docker). The container runtime provides basic
container management functions to k8s, e.g., creating, starting,
and stopping containers, managing container images, etc.

2.2 Storage Support in k8s
Data in containers are ephemeral. To allow persistent user

data, Kubernetes provides a volume abstraction to store data
permanently. A volume in k8s outlives any containers that run
within the pod, and data is preserved across container restarts.
Essentially, a k8s volume is a directory on the host and is
mounted into containers of a pod. The medium that backs
a volume is determined by the particular volume type being
used, e.g., local, iSCSI, awsElasticBlockStore (Amazon Web
Services EBS), gcePersistentDisk (Google Compute Engine
Persistent Disk), etc.

K8s provides a PersistentVolume (PV) subsystem to man-
age how backend storage is provisioned and consumed. A PV
is a portion of the cluster’s storage that an administrator has
provisioned [12]. A PV will generally have a specific storage
capacity set when it is created. Currently, storage size is the
only PV resource attribute that can be set or requested. To
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avoid exposing users to the details of how volumes are imple-
mented, an administrator usually uses StorageClass (SC) to
categorize PVs, e.g., gold, silver, and bronze classes. A PV
can be manually provisioned or dynamically provisioned. To
manually provision a PV, cluster administrators have to make
calls to their storage provider to create storage volumes in
advance and then create PV objects to represent them in k8s.
In the manifest (i.e., configuration file) of a PV, the admin-
istrator will assign an SC name to indicate the StorageClass
of that PV. To dynamically provision a PV, cluster adminis-
trators first have to create StorageClass objects in k8s. Inside
the manifest of each SC object, the administrators must then
specify a set of properties of the volume and a provisioner that
is able to provision such volumes. Each SC must be unique in
the cluster. Regardless how PVs are created, administrators
must classify the storage resources in the cluster by using SC
in advance.

With PVs, a k8s user does not use the pod manifest to spec-
ify what storage should back the volume. Instead, k8s users
provision volumes using a PersistentVolumeClaim (PVC).
Storage size is the only attribute that can be used in a PVC
request, but a user can choose the class of storage by speci-
fying an SC name. After a PVC is created, k8s will look for
a matching pre-provisioned PV, or create one if dynamically
provisioning PVs, and bind the PVC with it.

When scheduling a pod, k8s only selects a host for the
pod based on CPU, memory, affinities requirements, etc. It
does not consider the storage resources that each host can
access. After a destination host is determined, the kubelet
daemon on the selected host will assign a pre-created PV
to the pod, or call the corresponding storage provisioner to
create one. It assumes that each host has access to enough
storage resources.

First, storage selection is excluded from the host selection
process, which does not consider the storage resources that
each host can access. During the scheduling process, k8s just
assumes the selected host will have access to enough storage
resources, which may not be the case. Hosts in the k8s cluster
may only have access to a limited number of local storage
or shared storage resources. The accessibility to different
storage resources, and the available storage resources should
be considered during the pod scheduling process.

Given these concepts, the process of deploying an applica-
tion with persistent storage in the current Kubernetes environ-
ment is described as follows: (1) The administrator classify
storage resources in the cluster by using SC. (2) The admin-
istrator creates PV objects (in manual provisioning) or SC
objects (in dynamic provisioning). (3) The user creates a PVC.
(4) The user creates one or multiple pods and refers to the
previously created PVC. (5) The kube-scheduler selects hosts.
(6) The kubelet daemons on the selected hosts assign storage.

2.3 Limitations of Storage Support in k8s
With support for storage as it currently exists in k8s, ad-

ministrators can configure their cluster’s storage into differ-
ent categories and present them to users as multiple Stor-
ageClasses. However, this mechanism suffer from several
limitations. First, storage selection is not considered when
scheduling pods in kube-scheduler. In case that hosts only
have access to a limited number of local storage or shared
storage, it is probable that the storage resources a selected
host can access cannot meet the user’s storage requirements.
Second, SC is static, but the performance of a storage system
dynamically changes as the workload running on it constantly
evolves. For example, consider a system containing multiple
HDDs and SSDs where the administrator configures two SCs.
One SC is called "fast" with SSDs as the backend, and the
other SC is called "slow" with HDDs as the backend. If too
many workloads are running in the SSDs and make them con-
gested while the HDDs have no workload, the "fast" SC can
be slower than the "slow" SC. To avoid this problem, adminis-
trators have to monitor the performance of all types of storage
and dynamically adjust the physical configuration under each
SC. This monitoring and adjustment takes significant effort
from the administrators to meet users’ storage SLOs. Second,
limited SC choices or inappropriate configurations may waste
storage resources to meet users’ SLOs while large numbers
of SCs are hard to maintain. When deploying applications,
users have to map their storage requirements into an existing
SC, which usually provides more resources than they need,
e.g., more bandwidth, more space, or unnecessary functions
(encryption, deduplication, etc.). Otherwise, users will be in
danger of an SLO violation. If the number of SCs are few in
a cluster, it has a high chance that a user may have to pick an
SC providing resources much more than what he/she actually
needs. If administrators want to perfectly meet each user’s
storage requirements, they may have to create an SC for each
user with different storage requirements. In this case, it re-
quires a large number of SCs which is hard to maintain. Third,
StorageClass does not support advanced storage requirements.
Some modern applications have advanced storage require-
ments expressed as policies [26, 36]. These policies can be
dynamic, where an action is triggered if conditions are met.
For example, a policy that requires cache when the GET op-
erations per second are greater than 5 can be expressed as:

policy: WHEN GETS/s > 5,SET CACHING (2.1)

With these advanced storage requirements, it is hard to pick
an appropriate SC.

2.4 Scope and Objectives
This paper focuses on guaranteeing users’ storage require-

ments in Kubernetes environment. Users’ applications are
deployed in containers in k8s. We assume the total CPU,
memory, and storage resources in the k8s cluster are fixed,
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and administrators will not add infinite resources due to the
high cost and maintenance effort.

K8sES is designed based on several objectives to ensure
users’ storage requirements are met. First, the storage where
a pod is running should meet the storage SLOs of the user. At
the same time, the node where the pod is running should meet
other k8s resource related requirements of the user, including
CPU, memory requirements, etc. Second, all k8s non-resource
requirements, including port, affinities with pods, etc., should
be met. Third, the pod scheduling and storage allocation deci-
sions should reduce the possibility of SLO violations. Fourth,
resources in the cluster should be used efficiently. Fifth, it
should be easy for administrators to configure. Sixth, the pro-
posed design of k8sES should keep the same interface as
standard k8s. To these ends, k8sES can accommodate differ-
ent storage SLOs.

In this paper, we focus on several essential storage require-
ments. K8sES enables users to specify capacity, sustained
bandwidth, storage sharability, and advanced storage poli-
cies [26] as stated directly in their pod configuration file.

3 Architecture
Figure 1 shows the architecture of k8sES, which follows

the master-slave mode of Kubernetes. In Kubernetes, a user
puts the specifications of an object that he/she wants to cre-
ate in a configuration file (manifest) and calls a universal
interface create -f 〈mani f est〉 to create the object. Since this
interface is easy and succinct, there is no need of modifying
the interface; rather, we add a new section in the manifest
that allows users to directly specify their detailed storage re-
quirements (e.g., Figure 2). When users of k8sES are not
certain about which StorageClass to pick, they can simply put
their detailed storage requirements in the manifest and use
the same standard interface to deploy an application.

After receiving a scheduling request, the k8sES-scheduler
(a modified kube-scheduler) is responsible for selecting a
proper host that can meet the user’s standard computation,
memory, and non-resource requirements (affinity, node health,
port, etc.) as well as a proper storage device (or system)
that can meet the user’s storage requirements. The k8sES-
scheduler will restrict that the selected host has access to the
selected storage. The scheduling decision is sent to the kubelet
on the selected host to launch the pods. We extend the kubelet
function so it can automatically allocate storage resources for
the pods on the selected storage device. After receiving the
scheduling decisions, the kubelet will pass parameters about
the users’ storage requirements to our k8sES driver so it can
create volumes with the requested resources on the selected
storage. Finally, the kubelet calls the underlying container
runtime to launch containers and mount the storage to these
containers. The Monitor module monitors all the running pods
and storage. It collects I/O related data from each running
pod and each storage device. The collected data are used for
both pod and storage management. If there is any storage

SLO violation, the Monitor module will call the Migrator to
migrate pods and data. When deleting a pod, its allocated
storage will be retained if users have set the reclaim policy to
"Retain" in the new storage section of the pod configuration
file. Users can reuse a volume by referring to the name of the
pod that this volume previously belongs to, plus the name of
the volume itself. If the reclaim policy is "Delete" or omitted,
the allocated storage will be deleted together with the pod.

K8sES also contains a Discovery module to detect the
available storage resources in the cluster. The joining and
leaving of storage devices, as well as storage failures, can be
automatically detected by the Discovery module. Both the
Discovery and Monitor modules track the remaining storage
resources in the system. The k8sES-scheduler queries these
two modules to determine the currently available resources
on each storage device.

K8sES has high scalability. To avoid single-node limita-
tions, both the k8sES master and worker nodes can be hori-
zontally scaled in the same way as standard k8s [3, 14].

3.1 Selecting Storage Along with Nodes
The current k8s process of scheduling a pod on a node

undergoes predicate, priority, and select steps. In the pred-
icate step, the scheduler filters out nodes that cannot meet
all the predefined predicates (i.e., quick yes/no rules). These
predicates will check whether those requirements with defi-
nite numbers and those explicitly specified as "RequiredDur-
ingScheduling" in the pod configuration files are met. In the
priority step, the scheduler checks the priority of each node
by scoring it based on a list of priority rules. Each priority
rule has a weight and calculates a score from 0 to 10 for each
node. The weighted summation of the scores from all priority
rules is the final score of a node. Finally, the scheduler selects
the node with the highest score and sends the decision to
kube-apiserver. The kubelet on the selected node will launch
the pod. If there are multiple nodes with the same highest
score, the scheduler will select one in a round robin fashion.

In k8sES-scheduler, we select both storage and nodes for
a pod. As storage and nodes are different resources, how to
coordinate the scheduling to meet users’ various requirements
is an issue. Intuitively, we may select nodes first. In this case,
however, the storage belonging to the selected nodes may not
meet the storage requirements. Alternatively, we may select
storage first. In this case, the selected storage may not belong
to any eligible nodes. In k8sES, we first define users’ storage
SLOs (capacity, bandwidth, sharing, policies, etc.) as predi-
cates. All other requirements used to reduce the possibility
of SLO violations and optimize cloud resource efficiency are
defined as storage priority rules (discussed in Sec. 3.2). In the
predicate step, the scheduler will first filter a list of node can-
didates which can meet all node related requirements. Then,
we check the storage predicates. We only check the storage
that can be accessed by the filtered nodes. In the priority step,
we calculate scores for each filtered node and storage device
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k8sES-scheduler

kubectl create -f app.yaml

kube-apiserveretcd

kube-controller-

manager

Migrator

Discovery

Host
Driver

... Host

kubelet kubelet

kube-proxy kube-proxy

Driver

pod pod...

Managed 

Cluster

K8sES Master

Monitor

Storage 
Status

Figure 1: System architecture of k8sES.

<k8sES volume >
s i z e : x GB
s u s t a i n e d bw : y MB/ s
s h a r i n g : F a l s e
r e c l a i m : R e t a i n
p o l i c y : WHEN GETS / s > z , SET CACHING

Figure 2: Example storage requirements in k8sES.

based on the node priority rules and storage priority rules. In
the final select step, one option to select node and storage
is selecting a node with the highest score calculated by the
node priority rules and then picking storage with the highest
score accessible by this node. However, this method down-
grades the importance of storage priority rules. It is possible
that all the storage devices that the selected node can access
have very low scores (e.g., the available storage space and
bandwidth resources are exactly the same as the requested
resources). K8sES selection considers both node and storage
priority rules fairly. After calculating the score of a node and
the scores of its accessible storage, we pick the storage with
the highest score and add its score to the score of the node.
The final decision selects the node that has the highest com-
bined score and then selects the storage with the highest score
on that node. The decision tuple 〈Node,Storage〉 is then sent
to the kubelet on the selected node where it will launch the
pod on Node and create the volume on Storage.

3.2 Priority Rule
In k8sES, the predicate process ensures the storage SLOs

can be met at initial allocation. However, as more applications
are launched, the storage SLOs of existing pods may still be
violated due to bad allocation from other sources. K8sES
considers this possibility and gives preference to storage that

has a lower possibility of future SLO violations. K8sES sets a
least_storage_usage priority rule in the priority process that
assigns a higher score to a storage device if its space and
bandwidth usage would still be low after assigning the pod to
it. In practice, the score (maximum is 10) of a storage device
for this priority rule can be calculated as:

Score =(10×
Sizetotal−Sizerequested

Sizetotal

+10×
Bandwidthtotal−Bandwidthrequested

Bandwidthtotal
)/2

where Sizetotal is the total size of a storage device,
Sizerequested is the requested storage size of all existing
pods using that device plus the pod to be launched,
Bandwidthtotal is the total bandwidth of the storage device,
and Bandwidthrequested is the requested storage bandwidth of
all existing pods using that device plus the pod to be launched.

Moreover, storage and other resources in the cluster need
to be balanced. Otherwise, an unbalanced utilization may
waste resources. For example, assume there is a cluster of two
nodes that each have local storage. Each node has 64GB of
memory and 1TB of storage, and we only care about memory
and storage space resources. Due to system and user activ-
ities, the current available resources are 38GB of memory
and 900GB of storage in Node 1 and 58GB of memory and
400GB of storage in Node 2. Now assume a pod requires
32GB of memory and 100GB of storage. The scores given
by the least_storage_usage rule on memory and storage are
summarized in Table 1. As discussed in the previous section,
we select Node 1 as it has a higher combined score. This pod
will be launched on Node 1 and its local storage. After this al-
location, only 6GB of memory is left while 800GB of storage
is unused on Node 1. If all incoming pods require more than
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Table 1: Example scores of nodes with different resources

Nodes Memory Storage Space Combined
Node 1 1 8 9
Node 2 4 3 7

6GB of memory, the remaining storage resources on Node 1
will be wasted. Therefore, we set a usage_leveling priority
rule which assigns a higher score to a storage device if CPU,
memory, storage space, and storage bandwidth usages will
be more balanced after assigning the pod to it. In practice,
the score of a storage device under this priority rule can be
calculated as:

Score = 10−10×|
CPUrequested

CPUtotal
+

Memoryrequested

Memorytotal

−
Sizerequested

Sizetotal
−

Bandwidthrequested

Bandwidthtotal
|

Each priority rule is also associated with a weight (0 to
1). Administrators of k8sES can adjust the importance of
each priority rule by adjusting the weights. When adding the
storage score to the score of a node, we also have weights
allowing administrators to adjust the importance of storage
resources and non-storage resources. By setting these weights
during the startup of k8sES, people can achieve different
tradeoffs between storage resources, node resources, resource
usage efficiency, risk of SLO violations, etc.

3.3 Discovery
Unlike k8s, k8sES does not require administrators to create

PersistentVolume or StorageClass resources to describe and
categorize the storage capabilities in the cluster. We include
a Discovery module to detect all available storage resources
in the cluster automatically. First, when a node joins the clus-
ter, it must register with the Discovery module to report its
available storage resources including Name, Location, Size,
Bandwidth, and Shareability. Whenever storage is added to or
removed from a registered node, the node also needs to report
the changes to the Discovery module. Expanding on the node
health check capabilities in the current k8s, the Discovery
module allows k8sES to also detect storage failures. Each
node periodically sends heartbeat messages to the Discovery
module. The module maintains a liveness map of each storage
device and is quickly able to recognize storage failures. If
there is a node or storage failure, the Discovery module will
call the Migrator module to start the failover process.

3.4 Monitoring
The Monitor module in k8sES collects the I/O performance

of both pods and storage devices. It collects the read and write
I/O throughput of each pod in real time. It also monitors the
collective I/O throughput and space utilization of each storage
device. The collected data are used in four ways.

First, the collected data are used to identify any misbehav-
ing pods. In case that a pod takes more I/O resources than it

requested, the Monitor may throttle the I/Os, or it may log and
report the event to the administrator for later auditing. The
actions to be taken are determined during the initialization of
k8sES.

Second, the collected data are used to enforce dynamic
policies when their conditions are met. The Monitor module
analyzes the I/O performance related statistics, e.g., read/write
IOPS (I/Os per second) and read/write throughput. Once the
metric defined in the dynamic policy of a pod meets the con-
dition, the Monitor will call the corresponding functions or
tools to take actions. For example, assume a pod defines a
dynamic policy (2.1). Once the read IOPS on the storage
allocated to that pod is greater than 5 for a significant amount
of time (e.g., one minute), the Monitor will set up a dedicated
cache for the pod. Note that such a cache is more useful for
pods accessing remotely shared storage. For pods accessing
local storage, such a policy may be ignored due to the ex-
istence of the file system cache. Currently, the functions in
k8sES include caching and I/O throttling. In the future, we
may support more metrics by collecting richer information in
the cluster and support additional I/O related functions.

Third, the collected data are used to adjust the storage
resource allocation based on the actual storage resource uti-
lization. These adjustments are discussed in Sec. 3.5.

Fourth, the collected data are used to determine possible
storage SLO violations of pods. In case of SLO violation, it
will call the Migrator module to do migration. The details are
discussed in Sec. 3.6.

3.5 Thin Provisioning, and Multiplexing
The Monitor module analyzes storage utilization related

statistics, e.g., disk space used by each pod and read/write
throughput of the storage on each host. It maintains two ta-
bles: one about the space usage at the pod level and one with
bandwidth usage at the storage level. For each pod i running
in the cluster, it records the current disk space used on the
file system, Si

used, and the requested storage space, Si
req. After

the scheduling, the kubelet on the selected node will not fully
provision the volume with the requested space. Instead, it will
only provision a volume with size ρ ·Si

req where (0 < ρ≤ 1).
ρ controls the initial storage space allocation. As time goes
on, once the file system usage reaches a threshold θ, the Mon-
itor module will issue a command to the host to expand the
current storage space allocation by µ ·Si

req where (0 < µ≤ 1).
µ controls the speed of space allocation increase. This method
of storage space allocation is called "thin provisioning." Thin
provisioning is reasonable because users typically request
more storage space than they actually use. Thus, thin provi-
sioning can further save storage space resources of the cluster.
There are still tradeoffs, however. Considering that increasing
storage space of a volume while it is being used may influence
the ongoing I/Os, a big ρ and µ will ensure more steady I/O
performance but waste more storage space. A small ρ and
µ can save more storage space but may hurt the I/O perfor-
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mance. The configurations of ρ and µ are at administrators’
discretion and can be adjusted in k8sES.

For each storage device j detected by the Discovery mod-
ule, the Monitor module records its throughput (T P in MB/s)
at time t as T P j

t , its total requested bandwidth as B j
req, and

its literal (overall maximum) total bandwidth as B j
total. The

Monitor module calculates the average throughput, T P j, over
a time interval τ (e.g., six hours) from the T P j

t measurements
for each storage device. With these parameters, the Monitor
module calculates the bandwidth utilization as:

1
α j =

T P j

B j
req

We call α j the amplification factor of the bandwidth of stor-
age device j. It indicates that we can allocate pods to storage
device j as if it has a total bandwidth of B j

amlified = α j ·B j
total

without violating pods’ storage bandwidth requirements. We
use B j

amlified to update the available bandwidth for storage de-
vice j, on which the scheduling process is based. Conceptually
similar to thin provisioning, we call this scheme of storage
bandwidth allocation "multiplexing." Given that users typi-
cally request more storage bandwidth than they actually use,
this form of statistical multiplexing will further save storage
bandwidth resources of the cluster.

Since α j keeps changing as T P j changes, we will calculate
a new B j

amlified only when the difference between the newly
calculated amplification factor α j and the one currently being
used to calculate B j

amlified is greater than a threshold γ (e.g.,
±10%). A large γ will lead to late updates of B j

amlified and fur-
ther cause either resource waste (due to decreased bandwidth
utilization) or SLO violations (due to increased bandwidth
utilization). A small γ will lead to frequent updates of B j

amlified
and a waste of computation power. In practice, we set γ to
be 10%. In addition, it is possible that at some earlier time
the bandwidth utilization of a storage device is very low, and
a lot of pods are allocated to this storage. This results in a
high ratio between B j

req and B j
total. Once a pod’s throughput

resumes to its requested bandwidth, there is a high chance
that a lot of pods’ storage SLOs will be violated. To reduce
the chance of such SLO violations, we set a cap for α j to be
no more than 120%.

3.6 Migrator
Both thin provisioning and multiplexing improve the stor-

age utilization efficiency but bring potential storage space or
bandwidth SLO violations. To meet users’ storage SLOs with
high storage utilization efficiency, we design a Migrator to mi-
grate pods along with storage. If the total space utilization of
a storage device reaches a threshold (e.g. 90%), it will trigger
the migration. This is because there is a chance that the next
storage space expansion of a pod may fail due to insufficient
storage space. The migration will also be triggered if T P j

t

equals B j
total, which means the current stable throughput on

storage device j has reached the literal maximum. In other
cases like node and storage failure, pods and storage will also
be migrated.

If the migration is triggered by either thin provisioning or
multiplexing, the Migrator has to migrate the storage of one
or more pods. When selecting candidates to migrate, several
factors need to be considered. First, migrating the storage of
a pod will freeze the pod’s I/O for a period. The bigger the
storage space allocated, the longer it takes to migrate. Second,
migrating a pod with bigger storage will release more storage
space. Third, migrating a pod with a higher throughput will
release more bandwidth resources. Fourth, some pods have
pod affinities that require them to stay on the same node. Our
goal of migration is to reduce the down time of a pod and
reduce future migration. Our migration candidate selection
algorithm works as follows.

(1) If the migration is triggered by thin provisioning, mi-
grate the pod(s) with the smallest storage space allocated. No
matter which pod is migrated, some storage space will be re-
leased. Because migration is done early at the 90% threshold,
no storage space SLO has been violated yet and the migration
scheme can conservatively release storage space to reduce
migration overhead. For a pod with pod affinity, we consider
all those affinities as a group. We sum the allocated storage
space of that group and compare it with other candidates. If
the group is selected to migrate, we migrate the whole group.

(2) If the migration is triggered by multiplexing, we sort
pods based on space allocated and current throughput, respec-
tively. We assign scores based on the rank. A smaller allocated
storage space has a higher score, and a higher throughput has
a higher score. Then, these two scores are summed and the
pod with the highest sum will be migrated. For a pod which
has pod affinity, we will treat all those affinities as a group.

The migration destination is determined by the kube-
scheduler as a new scheduling process except that the origi-
nally selected storage is excluded.

4 Implementation
We implement k8sES based on Kubernetes Release-1.7.

The current k8s implementation is decoupled into multiple
binaries. Each module of k8s is an individual binary as are
the new/enhanced k8sES modules.

Our implementation of the Discovery module and Monitor
module in k8sES uses master/slave mode. Each k8sES node
runs a Discovery slave and a Monitor slave daemon. The
slaves collect the performance measurements for each pod
and the storage information on each node, and they send the
data to the Discovery master and Monitor master. If the mas-
ters make some decisions, they call the corresponding module
to carry out the operations. In the current implementation,
the Discovery slaves run lsblk to get the storage capabilities.
The Monitor slaves run iotop on each node to monitor the
I/O performance of each pod and run dstat to monitor the
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I/O performance of each storage device. People may extend
the functions of k8sES by calling other tools. The Discov-
ery master and Monitor master run in the same node as the
k8sES master. They maintain a data structure recording the
storage configuration map of all nodes in the cluster. This
data structure is shared with the k8sES-scheduler module.
In addition, the Monitor master also maintains a map of all
running pods containing the current I/O performance and the
dynamic policies of each pod. It will call the corresponding
slaves to execute the actions defined in the policies if the
conditions are met. Since the Monitor master is an individ-
ual binary, people can easily extend the support of storage
policies without affecting other functionalities of k8sES. The
Discovery master will call the Migrator module if any node
or storage is inaccessible. The Monitor master will call the
Migrator module if there are storage SLO violations.

The k8sES-scheduler receives the storage configuration
map from the Discovery and Monitor modules. It maintains
the map by recording the currently available resources of each
storage device. We implement our k8sESdriver as a Flexvol-
ume plugin. Flexvolume lets users write their own drivers to
make Kubernetes support their volumes [5]. Once called by
the kubelet, the k8sESdriver will first call the interface of the
selected storage device or system to create volumes with the
required size. For example, if LVM is the backend storage
and storage groups are presented, the volume driver will cre-
ate logical volumes to be used by the pod. It then optionally
creates a file system (if required in the pod configuration file)
and mounts the volume as a k8s volume. If there are sustained
bandwidth requirements that need to be met, it will also set
cgroups [33] to limit the bandwidth of the pod accessing this
volume. After the volume driver mounts the created volume
to the mount point defined in the pod configuration file, the
kubelet then starts the containers defined in the pod.

5 Prototype Evaluation and Comparison
This section evaluates a prototype of k8sES. Sec. 5.2 val-

idates the effectiveness of k8sES in meeting users’ storage
SLOs. We compare the scheduling results of k8sES with stan-
dard k8s. Sec. 5.3 shows the effectiveness of I/O throttling in
k8sES and its benefits when sharing storage. We show the I/O
monitoring abilities, storage resource savings, and migration
capabilities of k8sES in Sec 5.4. Sec. 5.5 tests the storage
usage efficiency under different circumstances. We discuss
the overhead of k8sES compared with k8s in Sec. 5.6.

5.1 Experiment Setup
In order to control the CPU, memory and storage resources

allocated to each node with flexibility, we use virtual machines
(VMs) as nodes in our experimental k8s/k8sES cluster. Our
k8s cluster consists of 41 virtual machines (VMs) running on
11 physical servers. Each server has two six-core Intel Xeon
2.40GHz E5-2620 v3 CPUs, 64GB of memory, 1TB Seagate
ST1000NM0033-9ZM173 SATA hard disk, and is connected
to an HP ProCurve 5406zl switch through a 1Gb/s Broadcom

Table 2: The configuration of workers used for validation

Worker 1 Worker 2
CPU 3 3
Memory 3 GB 2 GB
Local Storage Size 70 GB 50 GB
Local Storage Bandwidth 20 MB/s 50 MB/s
Shared Storage Share same 100 GB at 50 MB/s

NetXtreme BCM5720 NIC port. Among these VMs, 40 run as
k8s workers, and one runs as k8s master. One server hosts the
master and the other servers each host 4 workers. All physical
servers and VMs are installed Ubuntu 18.04. For each worker
node, we allocate both local and shared storage resources. The
storage capabilities of each worker are configured according
to different experiments.

5.2 Validation
We first verify scenarios where k8sES is able to schedule

pods to correct nodes and storage to meet the pods’ various
requirements compared with k8s. As the scale of the cluster
does not affect the correctness of the scheduling, we restrain
the pod scheduling onto two workers for simplicity. The con-
figuration of these 2 workers are listed in Table 3a.

5.2.1 Storage capacity
In the first scenario, we focus on the storage capacity re-

quirements. Assume we have 4 applications sequentially
deployed with pods A1, A2, A3, and B. Pods A1, A2, and
A3 each require 5GB of non-shared storage and 2MB/s of
storage bandwidth (〈5GB,2MB/s,non-sharing〉). Pod B re-
quires 〈50GB,10MB/s,non-sharing〉 storage. They do not
have other resource requirements. We deploy A1, A2, and A3
first and check the scheduling result of pod B. The scheduling
results of these four pods in k8s and k8sES are listed in Table
3a and 3b, respectively. In the tables, the remaining storage
capacity and remaining storage bandwidth of the workers
are given before Pod B is deployed. Because the current k8s
scheduler does not consider storage resources, it will always
pass the predicate step and generate equal priority scores in
the priority step when deploying these four pods. Then, k8s
schedules these pods in a round robin fashion, and schedules
Pod B on Worker 2. However, Worker 2 only has 45GB of
storage capacity available before scheduling B. The storage
capacity requirement of Pod B will be violated with such
scheduling decision. In contrast, k8sES-scheduler considers
the storage resources. Although both workers can pass the
predicate step of k8sES-scheduler, the priority step favors
Worker 2 when scheduling pods A1, A2, and A3 as it has
more balanced capacity and bandwidth resources. When de-
ploying Pod B, Worker 2 will fail the predicate check with not
enough storage capacity available. Pod B will be deployed on
Worker 1, and the storage requirements can be met.

5.2.2 Storage bandwidth
The second scenario verifies that k8sES can correctly sched-

ule pods with storage bandwidth requirements. Assume we
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Table 3: Comparing meeting storage capacity requirement

Workers
Capacity
(before B)

Bandwidth
(before B) Result

Worker 1 60GB 16MB/s A1,A3
Worker 2 45GB 48MB/s A2,B (7)

(a) k8s scheduling result

Workers
Capacity
(before B)

Bandwidth
(before B) Result

Worker 1 70GB 20MB/s B
Worker 2 35GB 44MB/s A1,A2,A3

(b) k8sES scheduling result

Table 4: Comparing meeting storage bandwidth requirement

Workers
Capacity
(before D)

Bandwidth
(before D) Result

Worker 1 60GB 0 C1,D (7)
Worker 2 40GB 30MB/s C2

(a) k8s scheduling result

Workers
Capacity
(before D)

Bandwidth
(before D) Result

Worker 1 60GB 0 C2
Worker 2 40GB 30MB/s C1,D

(b) k8sES scheduling result

have applications sequentially deployed with pods C1, C2,
and D. They each require 〈10GB,20MB/s,non-sharing〉 stor-
age. No other resources are required. Tables 4a and 4b show
the available storage resources before scheduling pod D and
the scheduling results in k8s and k8sES, respectively. Similar
to the results in Table 3, the scheduling decision made by
k8sES is able to meet the storage requirements of all pods
while k8s causes a violation of the bandwidth requirement of
Pod D.

5.2.3 Storage with other resources
In the third case, we verify that k8sES is able to meet stor-

age requirements along with other requirements. Assume we
have applications sequentially deployed with pods E1, E2, and
F. They each require 〈10GB,20MB/s,non-sharing〉 storage.
In addition, each pod requires one CPU core and 1GB of mem-
ory. Tables 5a and 5b show the available CPU, memory, and
storage resources before scheduling Pod F and the scheduling
results in k8s and k8sES, respectively. The schedule decisions
of k8s are made solely based on the CPU and memory re-
sources. After deploying Pod E1 and E2, it schedules Pod
F on Worker 1 as it has more balanced CPU and memory
resources based on the internal BalancedResourceAllocation
priority rule. However, Worker 1 has no more allocable stor-
age bandwidth and thus violates the storage bandwidth re-
quirement of Pod F. In contrast, k8sES-scheduler considers
various requirements and is able to pick Worker 2, which can
meet the CPU, memory, and storage requirements of Pod F.

These are just three possible scenarios where k8sES meets
SLOs that k8s cannot. Since users may have storage require-
ments with any values, SLO violations in k8s may be very
common without k8sES.

5.3 I/O Throttling

In k8sES, the administrator can configure the Monitor to
throttle I/Os or just report the events for future audit when
a pod consumes more storage bandwidth than it requested.
In this experiment, we show the effectiveness of k8sES in
throttling I/Os and preventing interference between different
applications. We run containerized Nginx [?] (a popular web
server, version 1.15.9), and OpenStack Swift [?] (a popular
object storage, version 2.20.0) in k8s and k8sES.

We first show k8sES is able to throttle I/Os according to
users’ requirements. We set up an HTTP client to download
files from the Nginx server. Without any limitation, it will
try to download files and generate I/Os on Nginx as fast
as possible. We set the Nginx pod to require local storage
and sustained storage bandwidth of 40MB/s and 30MB/s in
two tests. Figure 3 shows the I/O throughput of Nginx when
being scheduled on Worker 2 in Sec. 5.2. We can see in k8s,
the actual I/O throughput of Nginx is bounded to 50MB/s,
the maximum bandwidth of the local storage in Worker 2.
When running in k8sES, the actual throughput is throttled
successfully as requested.

The I/O throttling capabilities of k8sES can prevent not
only excessive I/O resource consumption, but also interfer-
ence from misbehaved applications when multiple appli-
cations use shared storage. In this test, we deploy Nginx
and OpenStack Swift in the same shared storage, which has
100GB size and 50MB/s I/O bandwidth. We use the default
benchmark tool of OpenStack Swift, ssbench [?], to gener-
ate storage requests. It performs CREATE, READ, WRITE,
DELETE of an object based on a configuration file called sce-
nario. In the scenario, it mostly generates READ requests with
20 workers issuing requests concurrently. At the same time,
we use the HTTP client to download files from Nginx. When
deploying, we set Swift to require 10MB/s bandwidth and
Nginx to require 40MB/s bandwidth. Ideally, Nginx should
see a throughput equal to its requested bandwidth, as the
HTTP client tries to download files as fast as possible. But
in Figure 4(a), we can see that the Nginx is often running be-
low the requested bandwidth in k8s, and sometimes can only
deliver files at the speed of 3/4 of the requested bandwidth.
Its throughput is fluctuating due to unstable performance of
Swift. When Swift tries to generates I/Os more than its re-
quested bandwidth (misbehaved), the storage SLO of Nginx
is violated. In comparison, with k8sES (Figure 4(b)), the I/O
throughput of Swift never exceeds its requested bandwidth,
and thus the Nginx can always deliver data at a speed that
matches the client requirement.
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Table 5: Comparing meeting CPU+Memory+Storage requirement

Workers
CPU
(before F)

Memory
(before F)

Remaining Capacity
(before F)

Remaining Bandwidth
(before F) k8s Scheduling Results

Worker 1 2 2 60GB 0 E1,F (7)
Worker 2 2 1 40GB 30MB/s E2

(a) k8s scheduling result

Workers
CPU
(before F)

Memory
(before F)

Remaining Capacity
(before F)

Remaining Bandwidth
(before F) k8s Scheduling Results

Worker 1 2 2 60GB 0 E1
Worker 2 2 1 40GB 30MB/s E2,F

(b) k8sES scheduling result
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Figure 3: I/O throttling in k8s and k8sES.
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Figure 4: The effects of misbehaved applications on well-behaved applications.

5.4 Monitoring, Thin Provisioning, Multiplexing,
and Migration

As monitoring capabilities are essential for ensuring stor-
age SLOs and enhancing storage utilization efficiency, we
perform an experiment to show these capabilities at both pod
and storage granularities. Through this experiment, we also
show the effects of thin provisioning, multiplexing, and pod
migration, which rely on the monitoring capabilities. In this
experiment, we mainly observe the I/O activities of three sim-
ulated applications in three pods, namely Pod A, Pod B, and
Pod C. Pod A requires 〈10GB,50MB/s,non-sharing〉 storage.
Pod B requires 〈2GB,40MB/s,non-sharing〉 storage. Pod C
requires 〈5GB,30MB/s,non-sharing〉 storage. Each pod will
generate I/Os bounded by its requested bandwidth for 40 min-
utes. The I/Os follow four normal distributions, each lasting
ten minutes. In the first ten minutes, the average throughput
of each pod equals half of its requested storage bandwidth. In
the third ten minutes, the throughput of each pod will reach its
maximum (the requested bandwidth). During the other times
(10-20 and 30-40 minutes), the distribution has random mean
and standard deviation.

At the beginning of the experiment, Pod A, Pod B, and
Pod C were deployed on the same node (Worker 3) which
has a 〈20GB,100MB/s〉 local storage based on the status of
the cluster of that time. We set the time interval τ to be five
minutes, which is the length of time used to calculate the
average I/O throughput, T P, of a storage device. Pod B and

Pod C were deployed after Pod A had run for five minutes.

Figure 5 shows the I/O throughput of each application. Fig-
ure 6(a) shows the I/O throughput on the local storage of
Worker 3. Note that the sum of the requested bandwidth of
the three pods is 120MB/s, which is greater than the 100MB/s
literal storage bandwidth of Worker 3. This is because the
storage bandwidth utilization of Worker 3 is only half of the
requested bandwidth at the scheduling of Pod B and C, as Pod
A only generates I/Os at half of its requested bandwidth dur-
ing the first 10 minutes. It results in the amplification factor
α = 2. Due to the 120% cap of α, the thin provisioning and
multiplexing mechanism enables allocation of pods to Worker
3 as if it has a storage bandwidth of 120MB/s, which is 120%
of its literal bandwidth. We can see that the I/O throughput on
Worker 3 never reaches its literal maximum until 20 minutes
after the startup of Pod B. At that point, circled in Figure
5 and Figure 6(a), the I/O throughput of each pod starts to
fully reach its requested bandwidth. When all pods reach their
maximums, the I/O throughput on Worker 3 exceeds its literal
maximum (We deliberately spare more storage bandwidth for
Work 3 over the literal 100MB/s to allow for better figure pre-
sentation). This triggers the migration process. Because Pod
B has the highest migration score, the Migrator decides to mi-
grate Pod B to another worker, namely Worker 4, which has a
〈50GB,50MB/s〉 local storage. The circled region in Figure 5
also shows the migration process. The I/Os of Pod B first drop
to zero and then resume to its maximum after restarting on
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Figure 5: Throughput of applications over
their lifetime.
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Figure 6: Monitored I/O throughput on Worker 3 and 4.

Table 6: The storage configuration of workers on each server
used for resource usage experiment.

Storage Size Storage Bandwidth
Worker 1 4000 GB 100 MB/s
Worker 2 500 GB 200 MB/s
Worker 3 500 GB 200 MB/s
Worker 4 250 GB 2000 MB/s

Worker 4. After the migration, the I/O throughput on Worker
3 immediately drops below its literal bandwidth, while the
I/O throughput on Worker 4 (shown in Figure 6(b)) increases
due to I/Os from Pod B.

5.5 Resource Usage Efficiency
In this experiment, we compare the storage resource utiliza-

tion of k8sES with the current storage allocation mechanism
in k8s. On each server, we allocate 1 NVMe SSD, 2 HDD
and 1 SMR to the four workers. We configure the storage
capabilities of the four workers on each server as in Table 6.

To make a fair comparison, we turn off the thin provisioning
and multiplexing functionalities. For k8s we create one SC
for each storage device in the cluster to allow for maximal
resource utilization. We assume the administrator divides
the resources of each SC evenly into multiple PVs. We also
assume users have full knowledge of the configuration and
capabilities of each SC and are always able to make the best
decision of choosing SC that can meet their storage SLOs
with minimal storage resources.

We deploy 5 applications in the cluster. One is the
log server ELK, requiring 〈500GB,10MB/s〉 storage fea-
turing high capacity low bandwidth requirement. Three of
them are Nginx servers. Nginx 1 requires 〈100GB,50MB/s〉
storage. Nginx 2 requires 〈200GB,100MB/s〉 storage. Ng-
inx 3 requires two storage volumes, 〈100GB,50MB/s〉 and
〈50GB,100MB/s〉. The last one is a read only Swift server
requiring 〈50GB,500MB/s〉 storage.

Figure 7 shows the number of instances we can deploy
for each application under different configurations. 1 PV and
2 PVs mean we divide each SC into 1 PV or evenly into 2
PVs. "Optimal" shows the maximum number of instances

that can be deployed if we evenly divide the SC. For differ-
ent applications, the number of PVs at "optimal" is different.
"Optimal+1" shows the case where we have one more PV
than "optimal" under each SC. "K8sES-no-leveling" shows
the case where we do not set the usage_leveling priority rule
in k8sES.

This figure shows that k8sES can deploy the most instances
for each type of application. It has a higher utilization effi-
ciency than the optimal case of using SCs divided into even-
sized PVs. If the SCs and PVs can be created arbitrarily, either
automatically or manually, the optimal result is then the same
as k8sES without thin provisioning and multiplexing. This
is because k8sES allocates storage on the fly based on users’
requests. No resources are pre-allocated or pre-created. Fur-
thermore, k8sES can be more resource efficient with thin
provisioning and multiplexing enabled. From Nginx 3, we
see that k8sES has a higher resource utilization efficiency
with the usage_leveling priority rule enabled than "k8sES-
no-leveling". This is because "k8sES-no-leveling" tends to
schedule pods onto storage with extremely high storage size
(e.g., Worker 1 on each server) with priority. As a result,
the bandwidth resource will be quickly eaten up by k8s vol-
umes with higher bandwidth requirements. The k8s volumes
which could be placed in this storage (e.g., with high capacity
low bandwidth requirements) cannot be placed any more. In
contrast, k8sES is trying to consume different resources at a
similar rate, and thus it results in more application instances
deployment.

5.6 Computation Overhead
Fast creation time is a major advantage of containers over

VMs. In k8s, containers are created during pod creation pro-
cess. In this subsection, we evaluate the performance influence
of selecting storage on creating pods. We deploy Nginx pods
in both k8s and k8sES, and measure the time from issuing
the "kube create" command till the pod entering "Running"
status. We set the pod to request different sizes of storage.
The measurement of the pod creation time is repeated 100
times for each pod configuration in both k8s and k8sES. To
make a fair comparison, we install the same driver that we
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Figure 8: Pod creation time with 95% confidence interval.

implemented for k8sES in k8s so that volumes will be auto-
matically provisioned in both systems. The difference is that
there is no storage selection process in k8s. In k8s, we stat-
ically select a storage device for each node that has enough
resources for the pod we create. Figure 8 shows the average
time to create a pod with the 95% confidence interval, and the
percentage of pod creation time increase with the storage size.
Overall, the storage selection process in k8sES brings only
7%-12% addition latency to pod creation. In addition, there
is no evidence that the pod creation time will increase with
storage size, as the latency increase of pod creation bounces
around 0 in the experiment.

6 Related Work
Containers offer an efficient way to run applications as

microservices. They are the essential building blocks of clus-
tering tools like Kubernetes. A performance analysis by IBM
shows that containers perform equal to or better than VMs in
CPU, memory, network, and storage related tests [25]. Most
container research focuses on Docker containers. DRR [24]
tries to improve the copy-on-write performance in Docker. Re-
search by Tarasov et al. [35] focuses on the choice of Docker
storage driver. Other studies like Slacker [28] and Anwar et
al. [19] focus on the Docker registry and the image pulling
process. Makin et al. [30] study Docker live migration.

Kubernetes is an open-source container orchestration en-
gine developed by Google and evolved from their prior work

on Borg [38] and Omega [22]. Since its v1.0 launch in
2015 [2], Kubernetes has become one of the most prevalent
container management systems and motivated a handful of
academic studies.. Víctor et al. [32] analyze the performance
of the Kubernetes system and study its adaptive application
scheduling [31]. Xu et al. [39] attempt to manage network
bandwidth for Kubernetes. Tsai et al. apply Kubernetes in fog
computing platforms for IoT (Internet of Things) [37].

Storage management in Kubernetes is still underexplored.
Some third parties provide storage support in Kubernetes.
REX-Ray [13] provides a vendor agnostic storage orchestra-
tion engine aiming to provide persistent storage for Docker,
Kubernetes, and Mesos. Any volume that is to be used by a
Kubernetes resource must be previously created and discover-
able by REX-Ray. This is similar to the manual provisioning
of PVs in k8s. NetApp’s Trident [11, 16] provides persistent
storage support to k8s. Users can specify Trident as a storage
provisioner in StorageClass, so PVs can be dynamically pro-
visioned from supported NetApp storage systems. However,
Trident and similar provisioners still suffer from the issues
in PV and SC. Our study targets the PV and SC issues in
k8s. Trident and similar provisioners can better ensure users’
storage SLOs as storage provisioners of k8sES.

There are storage management systems in VM environment
for a period of time. Pesto [27] is implemented as part of
VMware’s Storage DRS [17] component of vSphere [18]. It
provides an automated storage management system that can
model and estimate storage performance, and recommend VM
disk placement and migration in order to balance space and
I/O resources across the datastores in VMware environment.
However, in order to apply the Storage DRS to Kubernetes,
a storage provisioner which supports Storage DRS must be
developed based on the PV abstraction and SC of Kubernetes.
In this way, it still suffers from the limitations of PV and SC
we discussed in this paper. In addition, Pesto only works in
an environment where each compute node is connected to a
centrally managed storage. In today’s versatile application
environment with k8s, storage selection with consideration of
the storage connectivity of each compute node is essential in
application scheduling.

7 Conclusion
This paper presents k8sES, a system that can efficiently

support applications with various storage SLOs along with
all other requirements deployed in the Kubernetes environ-
ment. With k8sES, users can put their storage requirements di-
rectly in their configuration files when deploying applications.
K8sES will schedule a pod to the right node and storage, and
it automatically creates volumes with the required resources
on the selected storage. Users’ storage SLOs can be ensured
together with all other requirements. In addition, k8sES im-
proves the cluster resource usage efficiency in the cloud and
provides I/O monitoring capabilities to Kubernetes.
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