
Rejuvenator:A Static Wear Leveling Algorithm for Flash memory

Muthukumar Murugan and David Du
Department of Computer Science, University of Minnesota

Abstract

NAND flash memory has the potential to become the
storage alternative of the future due to its better perfor-
mance and low power requirements. However reliabil-
ity is still a critical issue in using NAND flash memory
for large scale enterprise applications. The number of
times a block can be reliably erased is limited in a NAND
flash memory. A wear leveling algorithm helps to pre-
vent the early wear out of blocks in the flash memory. It
spreads the erase operations evenly across all blocks and
prevents any single block from reaching its maximum
erase count limit sooner than other blocks. In attempt-
ing to do so the cold data is moved to more worn out
blocks thereby reducing the rate of wear in those blocks.
However, the migration of cold data is an expensive op-
eration since it induces additional erase operations in the
swapping process. To overcome this problem we propose
a static wear leveling algorithm, named asRejuvenator,
that maintains the variance in erase counts of the blocks
within a threshold as well as reduces the cost of the ad-
ditional cold data migrations.Rejuvenator uses an adap-
tive scheme that gradually reduces the variance in erase
counts of the blocks as some of the blocks are approach-
ing their maximum erase count limit. Our experimental
results show thatRejuvenator outperforms the existing
best known wear leveling algorithms.

1 Introduction

With recent technological advances, it appears that
NAND flash memory has enormous potential to over-
come the shortcomings of conventional magnetic media.
The use of flash memory has become ubiquitous in the
recent past. Flash memory is widely being used in to-
day’s smart phones, digital cameras and MP3 players.

Flash memory is popular among these devices due to its
small size, light weight, high shock resistance and fast
read performance [4, 15, 16]. To cap all the aforemen-
tioned advantages flash memory based devices are ex-
tremely low consumers of power and hence can help in
building Greener Systems. The popularity of flash mem-
ory has also extended from embedded devices to laptops,
PCs and enterprise-class servers with flash-based Solid
State Disks (SSD) widely considered as a future replace-
ment for magnetic disks [12, 20, 23]. The drive to use
NAND flash based Solid State Drives(SSDs) in the en-
terprise market is growing faster than ever.

Despite all the advantages, the reliability of NAND
flash memory is a big concern. NAND flash memory
is organized as an array of blocks. A block spans 32-
64 pages [26], where a page is the smallest unit of read
and write operations. Flash memory-based storage has
several unique features that distinguish it from conven-
tional disks. In conventional magnetic disks, the read
and write times are approximately the same. In flash
memory-based storage, in contrast, writes are substan-
tially slower than reads. Furthermore, all writes in a flash
memory must be preceded by an erase operation, unless
the writes are performed on a clean(previously erased)
block. Read and write operations are done at the page
level while erase operations can only be done at the block
level. Hence with a naive approach, an update to a single
page may require all valid pages in the block to be copied
to another location, erasing the current block and then
copying the pages back to the current block along with
the updated page. The last operation may be replaced by
making changes to the mapping table. This leads to an
asymmetry in the latencies for read and write operations.
Frequent block erase operations reduce the lifetime of
flash memory. This is known aswear out problem. In

1



this paper, we address thewear out problem.

Due to the physical characteristics of NAND flash
memory, the number of times that a block can be reliably
erased is limited. For an SLC (Single Level Cell) flash
memory this number is around 100K times and for an
MLC(Multi-Level Cell) flash memory it is around 10K
times [4]. Wear leveling algorithms try to even out the
wearing of different blocks of the flash memory. A block
is said to be worn out, when it has been erased the max-
imum possible number of times. The lifetime of a flash
memory is typically considered as the number of write
operations that can be executed before the first block is
worn out. The primary goal of any wear leveling algo-
rithm is to increase the lifetime of flash memory by pre-
venting any single block from reaching the 100K erasure
cycle limit (here we assume SLC flash). In this paper
we have designed an efficient wear leveling algorithm for
flash memory and evaluated its performance.

In flash memory, some data are very frequently up-
dated. The data that is updated more frequently is defined
ashot data, while the data that is relatively unchanged is
defined ascold data. Optimizing the placement of hot
and cold data in the flash memory assumes utmost im-
portance given the limited number of erase cycles of a
flash block. If hot data is being written repeatedly to cer-
tain blocks, then those blocks may wear out much faster
than the blocks that store cold data.

The existing approaches to wear leveling fall into two
broad categories -static anddynamic. Dynamic wear
leveling algorithms [2, 6, 8] attempt to avoid hot data be-
ing written to the same block repeatedly so that no sin-
gle block reaches its maximum erase count faster than
other blocks. However these algorithms do not attempt
to move cold data that may remain forever in a few
blocks. These blocks wear out very slowly relative to
other blocks. This results in a high degree of unevenness
in the distribution of wear in the blocks. On the other
hand, static wear leveling algorithms [4, 5, 7, 10, 27, 30]
attempt to move cold data to more worn blocks thereby
facilitating more even spread of wear. However, mov-
ing cold data around without any update requests incurs
overhead. It is important that this expensive work of mi-
grating the cold data is done optimally and does not cre-
ate excessive overhead.

By carefully examining the existing wear leveling al-
gorithms, we have made the following observations.
First , one important aspect of using flash memory is to
take advantage ofhot andcold data. If hot data is be-
ing written repeatedly to a few blocks then those blocks

may wear out sooner than the blocks that store cold data.
Moreover, the need to increase the efficiency of garbage
collection makes placement of hot and cold data very
crucial.Second, a natural way to balance the wearing of
all data blocks is to store hot data in less worn blocks and
cold data in most worn blocks.Third , most of the exist-
ing algorithms focus too much on reducing the wearing
difference of all blocks throughout the lifetime of flash
memory. This tends to generate additional migrations of
cold data to the most worn blocks. The writes generated
by this type of migrations are considered as an overhead
and may reduce the lifetime of flash memory. In fact, a
good wear-leveling algorithm only needs to balance the
wearing level of all blocks at the end of flash memory
lifetime.

In this paper, as our main contribution, we propose
a novel wear leveling algorithm, named asRejuvenator.
This new algorithm optimally performs stale cold data
migration and also spreads out the wear evenly by nat-
ural hot and cold data allocation. It places hot data in
less worn blocks and cold data in the more worn blocks.
Storing hot data in less worn blocks will allow the wear-
ing level of these blocks to increase and catch up with
the more worn blocks. Storing cold data in more worn
blocks, helps these blocks to cool down as long as the
relatively lesser worn blocks catch up with their degree
of hotness. This is a natural way to balance the wearing
level of each block.Rejuvenator clusters the blocks
into different groups based on their current erase counts.
This clustering helpsRejuvenator to make very effi-
cient usage of blocks based upon their various levels
of hotness. The basic idea is to store cold data on the
blocks that are erased more number of times and hot
data in blocks that are erased lesser number of times.
Rejuvenator places hot data in blocks in lower num-
bered clusters and cold data in blocks in the higher num-
bered clusters. The range of the clusters is restricted
within a threshold value. Our experimental results show
thatRejuvenator outperforms the existing wear level-
ing algorithms.

The rest of the paper is organized as follows. Sec-
tion 2 gives a brief overview of existing wear leveling
algorithms. Section 3 explainsRejuvenator in detail.
Section 4 provides performance analysis and experimen-
tal results. Section 5 concludes the discussion.

2



2 Background and Related Work

The existing wear leveling algorithms classify the data as
hot and cold to make wear leveling decisions. The logi-
cal blocks that are frequently accessed are considered as
hot and those that stay intact without frequent updates
are called cold. The mapping of logical block addresses
to physical addresses is handled by the Flash Translation
Layer. The FTL maintains a mapping table that maps
logical addresses to physical addresses. This mapping
could be done at a fine granularity at the page-level or at
a coarse granularity at the block level. Extensive work
has been done in developing efficient wear leveling algo-
rithms for flash memory. The goal of these wear level-
ing algorithms is to efficiently place hot and cold data in
appropriate blocks so that few blocks do not reach their
lifetime faster than the other blocks.

There are two orthogonal approaches to wear leveling
namely:

1. Dynamic wear leveling: These algorithms achieve
wear leveling by repeatedly reusing blocks with
lesser erase counts

2. Static wear leveling: These algorithms attempt to
migrate the cold data into very hot blocks thus let-
ting the hot blocks to cool down.

Our proposed algorithmRejuvenator fits in the static
wear leveling algorithm category. In the rest of this
section, first we describe existing dynamic algorithms.
Next, we describe existing static algorithms.

2.1 Dynamic Wear Leveling Algorithms

Many dynamic wear leveling algorithms have been pro-
posed in literature e.g. [4, 6, 8]. However dynamic wear
leveling algorithms suffer from the disadvantage that the
blocks storing cold data have much lesser erase counts
compared to blocks storing hot data. This might result
in faster wearing of hot blocks while some blocks have
been erased very little number of times. This unevenness
in the erase counts of various blocks may cause some
blocks to reach their maximum erase count much faster
than other blocks and hence reduces the lifetime of the
flash memory. Henceforth we call blocks with lesser
erase counts as cold blocks or young blocks interchange-
ably. Similarly blocks with higher erase counts are called
hot blocks or older blocks. In all the dynamic wear lev-
eling algorithms efficient identification of hot and cold
data becomes extremely important.

2.2 Static Wear Leveling Algorithms

To prevent cold data from becomingstale in a few
blocks many static wear leveling techniques have been
proposed [4, 5, 7, 10, 27, 30]. However this migration
of cold data has to be done optimally. The migration
of cold data causes extra writes to be done and is hence
expensive. These extra writes help to maintain the vari-
ance in the erase count of all blocks but at the same time
introduce significant overhead. A good wear leveling al-
gorithm should optimize the cost of doing this expensive
work.

The Dual-Pool algorithm proposed by Chang [7]
maintains two pools of blocks-hot and cold. The blocks
are initially assigned to the hot and cold pools randomly.
Then as updates are done the pool associations become
stable and blocks that store hot data are associated with
the hot pool and the blocks that store cold data are associ-
ated with cod pool. If some block in the hot pool is erased
beyond a certain threshold its contents are swapped with
those of the least worn block in cold pool. The idea here
is to move the hottest data to the coldest block. The al-
gorithm succeeds in maintaining the difference in erase
counts of the blocks within a limit. However the there
could be a lot of data migrations before the blocks are
correctly associated with the appropriate pools. The al-
gorithm takes a long time for the pool associations of
blocks to become stable. Also the cold pool resize is
based on effective erasure count. The effective erasure
count of a block is the number of erases done after the
block is associated with cold pool after the swapping
operation is done. Sometimes blocks with high erase
count may have zero effective erase count. When up-
dates are done to these blocks there is no direct check on
the erase count of the maximum worn block in the cold
pool which might potentially lead to unevenness in wear-
ing. Chang [7] claims that the dual-pool performs better
than most other well known wear leveling algorithms and
hence we have chosen this algorithm to compare our re-
sults.

Chang et al. [10] propose a static wear leveling algo-
rithm in which a Bit Erase table is maintained as an ar-
ray of bits where each bit corresponds to2k contiguous
blocks. Whenever a block is erased the corresponding bit
is set. Static wear leveling is invoked when the ratio of
the total erase count of all blocks to the total number of
bits set in the BET is above a threshold. This algorithm
still may lead to more than necessary cold data migra-
tions depending on the number of blocks in the set of2k

contiguous blocks. The choice of the value ofk heavily

3



influences the performance of the algorithm. If the value
of k is small the size of the BET is very large and hence
the RAM space required is prohibitively large. However
if the value ofk is higher the expensive work of moving
cold data is done more than often.

Chang and Kuo propose [5] a basic wear leveling al-
gorithm where the hot and cold swapping is done when
the difference between the erase count of the oldest
block and the youngest block is higher than a predefined
threshold. This threshold check is done on a periodic ba-
sis. Determining the frequency at which this threshold
check is done is a crucial part. If this check is done more
often than necessary it may lead to excessive swappings
leading to an almost oscillatory behavior. If it is not done
at the proper frequency it might lead to inefficient wear
leveling.

The TrueFFS algorithm developed by M-Systems [27]
maintains a chain of physical erase units corresponding
to each virtual erase unit. Whenever a virtual erase unit
is updated a free physical erase unit is allotted from the
wear leveling pool. When no physical erase unit is avail-
able in the wear leveling poolfolding occurs where the
chain of physical erase units corresponding to a virtual
erase unit are garbage collected and made into one. Static
wear leveling is triggered at regular frequencies. There
is a possibility that some of the blocks have very high
erase counts compared to other blocks. Here also finding
an appropriate frequency in which static wear leveling
has to be done is very difficult. The frequency value is
crucial in achieving efficient wear leveling.

The other wear leveling algorithms like the one used
in JFFS [30] and the algorithm proposed by STMicro-
electronics [3] have very similar techniques and they ei-
ther attempt to move cold data more frequently or suffer
from the disadvantage that some of the blocks could po-
tentially reach their lifetime more quickly than others.

Another important factor affecting the performance
and lifetime of wear leveling algorithms is garbage col-
lection. Garbage collection is the process of retriev-
ing invalid pages from blocks by cleaning (erasing the
blocks) them. Many efficient garbage collection algo-
rithms have been proposed in literature [9, 14, 21]. How-
ever garbage collection and wear leveling do not go hand
in hand. Cleaning efficiency of a block could be de-
fined as the ratio of the number of dirty pages to the total
number of pages in the block [4]. Greedy approaches
of garbage collection try to maximize the cleaning ef-
ficiency. Intuitively hot blocks should be having more
number of invalid pages since they are more frequently

Table 1: Summary of some existing wear leveling algo-
rithms

Algorithm Cold data Migrations Comments
TrueFFS [27] Periodical Variance in erase counts

is very high
Dual-Pool [7] Threshold triggered More than necessary hot and cold data

swappings are done to maintain low
variance in erase counts

BET [10] Threshold triggered No. of cold data migrations
depends on the value of parameter k

Hot-Cold Swapping Periodical No. of cold data
algorithm [5] migrations is very high
Rejuvenator Minimal Uses an adaptive mechanism which

controls the variance in erase counts and
limits the number of cold data migrations

updated. This might lead to uneven distribution of wear
among the blocks since hot blocks would be recycled
often. Most of the wear leveling algorithms attempt to
freeze the wearing of hot blocks by preventing garbage
collection in them. The cold blocks i.e., blocks with
lesser erase counts therefore are recycled quite often and
they yield lesser number of clean pages.

Agrawal et al. [4] propose a wear leveling algorithm
which tries to balance the trade off between cleaning ef-
ficiency and the efficiency of wear-leveling. The recy-
cling of hot blocks is not completely stopped. Instead
the probability of restricting the recycling of a block is
progressively increased as the erase count of the block
is nearing the maximum erase count limit. Blocks with
larger erase counts are recycled with lesser probability.
Thereby the wear leveling and cleaning efficiency are
optimized. Static wear leveling is performed by storing
cold data in the cleaned hot blocks and making the cold
blocks available for new updates. The cold data migra-
tion adds 4.7% to the average IO operational latency.

In all the existing algorithms the number of forced
cold data migrations is higher than necessary in order
to reduce the variance in erase counts of blocks. Our
proposedRejuvenator algorithm performs the cold data
migrations in a natural manner and at the same time
maintains the variance in erase counts of blocks below
a threshold. Table 2 gives a comparison of the perfor-
mance ofRejuvenator algorithm with the other existing
wear leveling algorithms. The adaptiveRejuvenator al-
gorithm performs better than the existing algorithms in
terms of extra overhead and variance in erase counts.

3 Rejuvenator Algorithm

In this section, we describe our proposed wear level-
ing algorithm,Rejuvenator. Rejuvenator attempts to

4



overcome the limitations of the existing wear leveling al-
gorithms (as described in Section 2). The main goal of
Rejuvenator is to maintain the variation in erase counts
of all the blocks within a bound and at the same time
reduce the overhead of static wear leveling by optimiz-
ing the cold data migration. The rest of this section is
organized as follows. Section 3.1 gives an overview of
Rejuvenator. Section 3.2 provides a visual explana-
tion of the algorithm. Section 3.3 explains the working
principle ofRejuvenator in detail. Section 3.4 explains
the mechanism to adapt the main parameter valuek in
Rejuvenator.

3.1 Overview

The basic idea ofRejuvenator is to maintain more fre-
quently accessed data or hot data in less worn blocks and
less frequently accessed data or cold data in more worn
blocks in order to control the variance in erase counts of
the blocks. We identify hot and cold data explicitly. The
definition of hot and cold data is in terms of logical ad-
dresses. These logical addresses are in turn mapped to
physical addresses. We currently work at a coarse granu-
larity at the block level. The difference between the erase
counts of any two blocks is maintained within a threshold
k. The value ofk is initially large and is reduced gradu-
ally as the blocks are reaching their maximum lifetime.

Rejuvenator maintainsk lists of blocks. At any point
of time the difference between the maximum erase count
of any block and the minimum erase count of any block
is less than or equal to the thresholdk. Every block is
associated with a list whose number is equal to the erase
count of the block. Initially all blocks are associated with
list number0. As blocks are updated they get promoted
to the higher numbered lists. The blocks are queued in
LRU order in each list.

Every list can have three types of blocks:valid blocks,
invalid blocks andclean blocks. The definition of block
types is as follows. A block is classified as valid only if
all pages in it are valid. Similarly a block is classified
as invalid if one or more pages in the block are invalid.
Blocks that have all clean pages in them are clean blocks.
The blocks in the lower numbered lists have hot data and
the blocks in the higher numbered lists have cold data.
Garbage collection reclaims the invalid blocks and makes
them clean.

Let us denote the minimum erase count of all blocks as
min wear and the maximum erase count of any block as
max wear. Let the difference betweenmax wear and

Figure 1: Working of Rejuvenator algorithm

min wear be denoted asdiff. Blocks that store hot pages
are considered hot blocks and blocks that store only cold
pages are considered cold.min wear + m is an inter-
mediate value betweenmin wear andmax wear. For
experimental purposes the value ofm is half ofk.

3.2 Visualization

The working of the algorithm could be visualized by a
moving window where the window size is alwaysk as
in Figure 1. The shaded boxes represent the lists and the
blocks are associated with the lists. The different levels
of shades represent the different levels of hotness. The
darker boxes represent the lists containing hot blocks and
the lightly shaded boxes represent lists that have cold
blocks. As the window moves its movement could be
restricted on both ends. The window movement could
be restricted in the lower end due to the accumulation of
cold data in some of the blocks. The value ofmin wear

either does not increase any further or increases very
slowly. The movement of the window could also be re-
stricted at the higher end. This happens when there are
a lot of invalid blocks in themax wear list and they
are not garbage collected. In either case the values of
min wear andmax wear should increase by1 so that
the window movement is smooth. This is achieved by
Algorithm 2 as described in Section 3.3.

5



If no clean blocks are found in the higher numbered
lists it is an indication that there are invalid blocks in list
min wear+(k−1) and they cannot be garbage collected
since the value ofdiff would exceed the threshold. The
window movement is restricted and hence Algorithm 2
takes over. The blocks in listmin wear may still have
hot data since the movement of the window is restricted
at the higher end only. Hence data in all these blocks are
moved to blocks in other hot-lists.

Similarly when no clean blocks are available in the
lower numbered lists the window movement is restricted
at the lower end. This is an indication that cold data is re-
maining stale at the blocks in list numbermin wear and
so they need to be moved to higher numbered lists. The
blocks in list numbermin wear are cleaned. This makes
these blocks available for storing hot data and at the same
time increasing the value ofmin wear by 1. This makes
room for garbage collecting in themax wear list and
hence makes more clean blocks available for cold data as
well.

The algorithm also takes good care of the fact that
some data which is cold may turn hot at some point of
time and vice versa. If data that is cold is turning hot
then it would be immediately moved to one of the blocks
in lower numbered lists. Similarly cold data would be
moved to more worn blocks by the algorithm. We find
that the identification of hot and cold data is an integral
part of the algorithm. Many excellent algorithms for hot
and cold data identification have been proposed in liter-
ature [17, 11, 29, 8]. The performance of the algorithm
is however not seriously affected by the accuracy of the
hot cold data identification mechanism. This is because
at some point of time when a page is identified as hot it is
brought to one of the blocks in the lower numbered lists.
No stale cold data is allowed to reside in blocks belong-
ing to lower numbered lists. This migration is done in a
more natural manner rather than forcing the movement
of stale cold data.

3.3 Working Principle

The blocks that have their erase counts between
min wear andmin wear+(m−1) are used for storing
hot data and the blocks that belong to higher numbered
lists are used to store cold data in them. This is the key
idea behind which the algorithm operates. Algorithm 1
depicts the working of the proposed wear leveling tech-
nique. Algorithm 2 shows the static wear leveling mech-
anism.

Algorithm 1 Rejuvenator Wear Leveling Algorithm
1: if (min wear ≤ erase count < min wear + m) then
2:
3: if (Block is hot)then
4: Reuse the current block
5: else
6:
7: if (A clean block is available in one of the lists starting from

min wear + (k − 2) to e + 1 ) then
8: Use the clean block and clean the current block.
9: else
10: Reuse the current block
11: end if
12: end if
13: else
14:
15: if (min wear+(m−1) < erase count ≤ min wear+(k−2))

then
16:
17: if (Block is cold)then
18: Reuse the current block
19: else
20:
21: if (A clean block is available in one of the lists starting from

min wear to min wear + (m − 1)) then
22: Use the clean block and make the current block invalid
23: else
24: InvokeData Migration Algorithm
25: end if
26: end if
27: end if
28: else
29:
30: if (erase count = min wear + (k − 1)) then
31:
32: if (A clean block is available in any of the lists starting from

min wear + (k − 1) to min wear + m) then
33: Use the clean block and make the current block invalid
34: else
35: InvokeData Migration Algorithm
36: end if
37: end if
38: end if
39: if (Numberofcleanblocks < Lowerthreshold) then
40: Garbage collection is done untilNumberofcleanblocks =

Upperthreshold

41: end if

We call the lower numbered lists ashot−lists and the
higher numbered lists ascold−lists. Algorithm 1 clearly
tries to store hot data in blocks in the hot-lists numbered
frommin wear tomin wear+ (m− 1). These are the
blocks that have been erased lesser number of times. Let
us consider an update to one of the valid blocks. Lete be
the erase count of the block that is being updated.

3.3.1 Hot-Lists

The line numbers1 − 13 in Algorithm 1 show the steps
taken when an update is done to a block in the lower
numbered lists frommin wear tomin wear+(m−1).
When a hot block in the lower numbered lists is updated
the block is reused. This is done to retain the hot data in
the blocks in the lower numbered lists. When the update

6



is to a cold block in the lower numbered lists we write
to a clean block from list numbermin wear + (k − 2)

down to list numbere + 1 and clean the current block.
If no clean block is available we reuse the current block.
This way the cold data is placed in a block in the high-
est possible numbered list. We clean the current block so
that it could be used for storing hot data later. The rea-
son behind searching for clean blocks up to list numbere

is that initially all blocks are in the lower numbered lists
and there is a chance that no clean blocks are available in
the higher numbered lists. Hence we allow some of the
cold data to be present in the blocks in lower numbered
lists. This condition quickly changes as invalid blocks
accumulate in the higher numbered lists and garbage col-
lection retrieves them. Thus cold data could be stored in
the higher numbered lists.

3.3.2 Cold-Lists

Lines 14 − 26 of Algorithm 1 show the steps followed
when the update is to a block in the listsmin wear+m

tomin wear+(k−2). When the update is to a hot block
we try to find a clean block in one of the lower numbered
lists. The current block is made invalid and stays with-
out any further updates until garbage collection cleans
the block. When the update is to a cold block the current
block is reused. When no clean blocks are available for
the cold data static wear leveling is invoked by calling
Algorithm 2. The need to invoke static wear leveling is
explained in Section 3.2. When a block in list number
min wear + (k − 1) is updated it is moved to one of
the clean blocks in the higher numbered lists. If no clean
blocks are found in the higher numbered lists i.e. lists
numbered frommin wear+m tomin wear+ (k− 2)

the Algorithm 2 is invoked. We can see that the list
numbermin wear + (k − 1) predominantly has either
cold blocks or invalid blocks. There could also be clean
blocks that are the result of garbage collection. The num-
ber of valid blocks in the list numbermin wear+(k−1)

is relatively much smaller than the number of blocks in
the other lists. This helps to maintaindiff within the
thresholdk. Garbage collection has to be done carefully.
The invalid blocks in the list numbermin wear+(k−1)

are not garbage collected. This is to ensure that garbage
collection does not increase the value ofdiff beyondk.

3.4 Adapting Parameter Value

The value ofk controls the distribution of erase counts.
A smaller value ofk would keep the variance in erase

Algorithm 2 Data Migration Algorithm
1: if (No clean blocks are available in listsmin wear+m tomin wear+

(k − 2)) then
2: Move the contents of list numbermin wear to clean blocks in lists

min wear + 1 to min wear + (m − 1)

3: Clean the blocks in listmin wear

4: end if
5: if (No clean blocks are available in listsmin wear tomin wear+m−1)

then
6: Move the contents of blocks in listmin wear to blocks in lists

min wear + m to min wear + (k − 2)

7: Clean the blocks in list numbermin wear

8: Garbage collect in list numbermin wear + (k − 1)

9: end if

counts at a lower value. But this might cause a lot of
garbage collection activities and static cold data move-
ments. A larger value ofk on the other hand would
enable performing the writes in a more flexible manner
but the variance in the erase counts of blocks would be
higher. An intuitive approach would be to maintain the
value ofk larger initially when the erase counts of most
of the blocks is very less than the100K erasure count
limit. But as more writes are being done the variance in
erase counts has to be maintained within a smaller range
and hence the value ofk has to be reduced gradually.
As the blocks are very close to reaching the100K erase
count,the value ofk has to be made very small. The idea
behind adapting the value ofk is that initially it is not
necessary to trigger the static wear leveling mechanism
very often and the variance in the erase counts could as
well be large. But ask is decreased static wear leveling
would increasingly be triggered and the erases are more
evenly distributed. This helps in significantly reducing
the additional overhead due to unnecessary forced cold
data migrations in the flash memory initially when not
many update operations have been performed.

In order to study the effect of adaptingk with the avail-
able traces we scaled down the maximum erase count
limit from 100K to a smaller value(20K) and as the
blocks reach the maximum erase count limit we gradu-
ally reduce the value of the parameterk. We adopted
a simple adapting mechanism. We reduce the value of
k proportional to the difference between the maximum
erase count andmax wear. Let this difference be de-
noted aslife diff. In our experiments we fixed the value
of k at 10% of life diff. The higher the value oflife diff
the higher is the value ofk. As the value ofmax wear

reaches closer to maximum lifetime of the blocks, the
value ofk decreases gradually. Section 4 shows experi-
mental results for the cases when the value ofk is fixed
and when the value ofk adapts itself.

7



4 Performance Evaluation

This section is organized as follows. Section 4.1 de-
scribes the simulation environment and the experimental
setup. Section 4.3 analyzes the experimental results.

4.1 Simulation Environment

We developed our own trace driven simulator and con-
ducted our experiments on different trace patterns. We
simulated the behavior of a typical NAND flash mem-
ory like maximum lifetime, erase before write and map-
ping tables. We used the trace data from the UMass trace
repository [1] for our experiments. The UMass trace
repository has representative workloads for various envi-
ronments. We chose write intensive traces to study the
performance of our algorithm. In order to better ana-
lyze the performance of wear leveling we scaled down
the maximum erase count value to20K. The simulation
stops when the erase count of any single block reaches
this value. Algorithm 1 requires reuse of blocks.When-
ever such in place updates are required in our algorithm
we used replacement blocks for these updates and later
reclaimed the blocks during garbage collection. The per-
formance of our algorithm was compared with two other
well known wear leveling algorithms, the dual-pool algo-
rithm and the TrueFFS wear leveling algorithm. The Tru-
eFFS wear leveling algorithm is one of the widely used
algorithms proposed byM-Systems [27]. [7] claims that
the performance of the dual-pool algorithm is compara-
tively much better than most other existing wear leveling
algorithms. We observed that dual-pool indeed succeeds
in maintaining the variance in erase counts of the blocks
within a threshold and improving the lifetime of the flash
memory even though it had its own drawbacks. Hence
dual-pool algorithm is a good choice to compare our re-
sults. The most important metrics that we used for per-
formance evaluation were the lifetime of the flash mem-
ory and the number of migrations generated due to static
wear leveling. We also measured the mean erase count of
all blocks and the standard deviation in the erase counts.
We have observed and presented the number of writes
that can be done before a single block reaches various
values of erase counts(8K, 15K, 20K). In other words
we measure how quickly a single block reaches the maxi-
mum erase count which is a very critical measure of eval-
uation of any wear leveling algorithm. This, according
to us, is the most appropriate measure of lifetime of flash
memory. The most important objective of any wear lev-
eling algorithm should be to avoid any single block from

reaching the maximum erase count faster than the other
blocks.

4.2 Hot Data Identification

The identification of hot data is an integral part of the
Rejuvenator algorithm. We used two different meth-
ods to identify hot data in our experiments. The first
one was an offline optimal algorithm. Here we assumed
that we knew the access patterns beforehand and deter-
mined the logical block addresses that are hot. This
can be considered as the ideal case algorithm for iden-
tifying hot data and hence is the best for the perfor-
mance of theRejuvenator algorithm. In the second
algorithm we determined the hot data with the help of
the history of the data accesses. A simple scheme was
implemented for online identification of hot data with
a moving window of fixed size. The most frequently
used block numbers within the window are considered
as hot for the future accesses. Of course the performance
of the moving-window based scheme is dependent on
the workloads used. However our intention is to show
that theRejuvenator algorithm performs well even if
the hot data identification scheme performs moderately
well. The value ofdiff is never more than the value ofk
and hence the imperfection in the hot data identification
scheme is tolerable.

4.3 Experimental Results

In this section we present the results of our simulation.
As mentioned in Section 4.1 we compared the results
of our algorithm with results of two other algorithms
namelyTrueFFS anddual − pool.

4.3.1 Lifetime Measurement

Table 2: Number (in Millions) of write requests serviced
(Financial-1 Trace)

Max.Erase Max.Erase Max.Erase
count=8K count=15K count=20K

TrueFFS 110.32 345 420.5
Dual-Pool 132.3 364.1 475.1

Rejuvenator(k=30) 130 .1 363 486.4
Rejuvenator(k=50) 129.3 362.7 485.2

Rejuvenator(Adaptivek) 135.2 371.1 573.6

We definelifetime as the number of write requests that
can be serviced before any single block reaches its max-
imum erase count. Table 2 shows the performance pa-
rameters for the various algorithms for Financial1 Trace.

8



Table 3: Number (in Millions) of write requests serviced
(Financial-2 Trace)

Max.Erase Max.Erase Max.Erase
count=8K count=15K count=20K

TrueFFS 133.2 362.2 427.5
Dual-Pool 135.5 368.1 478.1

Rejuvenator(k=30) 135 .1 367.3 483.8
Rejuvenator(k=50) 134.6 366.5 482

Rejuvenator(Adaptivek) 136.4 374.2 574.6

Table 4: Number (in Millions) of write requests serviced
(Web Search Trace)

Max.Erase Max.Erase Max.Erase
count=8K count=15K count=20K

TrueFFS 126.2 367.2 410.8
Dual-Pool 138.5 371.5 456.5

Rejuvenator(k=30) 136 .7 369.7 472
Rejuvenator(k=50) 135.9 367.9 470.2

Rejuvenator(Adaptivek) 142 376.8 568.3

The performance ofRejuvenator was first evaluated
with fixed values ofk(k = 30,k = 50). The perfor-
mance was also measured whenk is adaptive and de-
creases gradually. Similarly Table 3 and Table 4 show
the performance of the various algorithms for Financial
2 and Web Search traces respectively. The Tables 2, 3, 4
show the number of write requests serviced before any
single block reaches an erase count of8K, 15K and
20K. This is a measure of how quickly a single block
would reach the maximum erase count limit. We see that
when the value ofk is fixed the rate at which the erase
count of8K is reached is almost the same as the rate at
which the erase count of15K is reached whenk is fixed.
This is because we keep the variance in erase counts of
all blocks within a fixed threshold from the beginning till
the end. This also leads to the increased number of cold
data migrations.

Tables 2, 3, 4 also show the performance parameters
for the case when the value ofk is adapted according
to the maximum erase count value. In Tables 2, 3, 4
the results presented forRejuvenator are for the case
when the hot data identification is done based on the
assumption that future write requests are known before-
hand. Table 5 shows the performance parameters when
the hot cold data identification is based on the history of
recent write requests andk is adaptive. In either case
k is initially very large and towards the end it is made
smaller. From Table 5 we can see that the performance
of Rejuvenator is not affected much by the hot data
identification mechanism used.

At any point of time the value ofk is 10% of life diff
which is the difference between maximum erase count

Table 5: Adaptive k(Hot-cold Identification based on his-
tory)

Std Dev Cold Data Migrations Lifetime
Financial 1 2.81 38K 563.3M
Financial 2 2.9 37K 565.2M
Web Search 2.95 38K 563.7M

Figure 2: Lifetime Comparison(In terms of Million
Write Requests)

(20K) andmax wear. For experimental purposes we
set the minimum value ofk to be3. This choice of the
minimum value ofk is driven by the choice of the pa-
rameterm. We tried different values form and finally
found satisfactory results whenm was50% of k. Hence
k has to be at least3 for anm to exist.

It can be observed from the Tables 2, 3, 4 that the erase
count of8K is reached faster and the erase count of15K

is reached slower. In other words the number of write re-
quests serviced before any block reaches an erase count
of 8K is much lesser compared to the number of write re-
quests serviced before any block reaches an erase count
of 15K. The erase count of20K is reached still slower.
The behavior is as expected because when the value of
k is high the variance in erase counts is higher. Hence
the erase count of8K is reached faster. As the value
of max wear is increasing the value ofk is gradually
reducing. The variance in erase counts is reduced and
hence any single block reaches the erase count of15K

much slower than it reached an erase count of8K. Sim-
ilarly any single block reaches an erase count of20K

much slower than it reaches an erase count of15K be-
cause the value ofk is very small towards the end and the
variance in erase counts is maintained within the thresh-
old much more aggressively. Hence the point at which
any single point reaches the maximum erase count limit
of 20K is delayed as much as possible.

9



Figure 3: Distribution of erases in all blocks in TrueFFS

Figure 4: Distribution of erases in all blocks in Dual-Pool
(k = 8)

4.3.2 Distribution Of Erase Counts

Figure 3 represents the distribution of erase counts
among the blocks in the TrueFFS wear leveling algo-
rithm. We have showed the erase-count distribution of
the first few blocks in order to give a clear picture of the
erase count distribution. We see that some of the blocks
have very high erase counts than others. This is because
the TrueFFS algorithm swaps the data in hot and cold
blocks only on a frequency basis. This may lead to some
blocks having very high erase counts while others have
a very little erase count. This affects the performance
of the algorithm because some blocks could reach their
lifetime much faster and hence this reduces the overall
lifetime of the flash memory. When cold data is turning
hot the migration of that data into a younger block de-
pends on the frequency on which the swapping is done.
Before this swapping is done the data is already hot and
the block has been erased considerable amount of times.

Figure 4 shows the distribution of erase counts in the

Figure 5: Distribution of erases in all blocks in Rejuve-
nator with fixedk = 30

Figure 6: Distribution of erases in all blocks in Rejuve-
nator with fixedk = 50

implementation of Dual-Pool algorithm. The Dual-Pool
algorithm succeeds to maintain the erase counts within
a threshold limit but at the cost of more than necessary
migrations of cold data. The threshold was set to8 and
hence the difference in erase counts of any two blocks is
at most8.

Figure 5 shows the distribution of erase counts in the
case ofRejuvenator when the value ofk is fixed at
30. We see that the difference between maximum erase
count and minimum erase count of any two blocks is30.
Figure 6 shows the distribution of erase counts when the
value ofk is 50. It can be observed that the value ofdiff
is not higher thank = 50.

Table 6: Standard Deviations in erase counts of all
blocks)

Financial 1 Financial2 WebSearch
TrueFFS 12.2 14.2 13.3

Dual-Pool 3.0 3.1 2.9
Rejuvenator 2.75 2.7 2.5

10



Figure 7: Standard Deviation in erase counts of all
blocks(Rejuvenator)

Figure 8: Mean erase count of all blocks

Henceforth in all the results we show the hot data iden-
tification mechanism that we used is based on the win-
dow of recent accesses and the value ofk is adaptive.

Table 6 shows the standard deviation in the erase
counts of the blocks for the various algorithms for the
three different traces. We see that in the case of Tru-
eFFS algorithm the variance in erase counts is very high.
Dual-pool algorithm successfully controls the variance
in erase counts by hot-cold data swapping. In the case
of Rejuvenator algorithm the standard deviation is ini-
tially very high since the value ofk is large initially. As
the value ofk decreases gradually the variance in erase
count also reduces. This is shown in Figure 7.

Figure 8 shows the comparison of mean of erase
counts of all blocks. It can be seen that the mean erase
count is very low in the case of TrueFFS. This indicates
that even when most blocks areyoung a few blocks have
reached their maximum value of erase count. It can be
seen that dual-pool andRejuvenator succeed in main-
taining the mean erase count at a higher value.

4.3.3 Cold Data Migrations

Figure 10 shows the comparison of cold data migrations
in the case of the three different algorithms.

In the case of TrueFFS the number of cold data migra-
tions done is very large. The Dual-Pool algorithm does
not utilize the blocks that are ’medium’ hot. As soon
as the difference between two blocks is higher than the
threshold value the swapping is done between most worn
and least worn blocks. The blocks that have intermediate
values of erase counts are not utilized according to their
hotness levels. When cold data is caught up in a block
with an intermediate value of erase count it takes a long
time before the data is identified as cold and migrated to
a more worn block. Before this happens a lot of hot and
cold swappings are done. But if the cold data was iden-
tified and placed in a more worn block the medium worn
blocks could be used to store hot data thereby reducing
the forced cold data movements considerably.

A mechanism for explicit identification of hot and cold
data with a certain degree of accuracy and the knowledge
of the hotness levels of blocks could reduce the exces-
sive cold data migrations and improve the performance
of wear leveling which is precisely whatRejuvenator

does. We see that the cold data migrations are almost
48% lesser compared to dual-pool and57% lesser com-
pared to TrueFFS algorithm. As the value ofk is adapted
we observed that the number of cold data migrations in-
creases. Figure 9 shows the number of cold data migra-
tions done that had been done at various points of the
simulation and the corresponding values ofk at those
points. We find that the number of cold data migrations
increases more steeply as the value ofk decreases. This
is expected because as the value ofk gradually decreases
the size of the window also reduces and the window
movement is restricted quiet often than when the value
of k is larger. Also the increased number of migrations,
that are done as the blocks reach their maximum possible
erase count, translate directly into improved lifetime for
the flash memory.

4.4 Implementation Issues and Overheads

Table 7: Performance Issues
Algorithm Overheads

TrueFFS Swapping
Dual-Pool Swapping, Queue Insertion

Rejuvenator Swapping, List search for clean blocks,List insertion

Table 4 shows the issues that affect performance of

11



Figure 9: No.of Cold data migrations at different values
of k

Figure 10: Comparison of number of cold data migra-
tions(In terms of thousands of migrations)

the flash memory while using the three different wear
leveling algorithms.

TheRejuvenator algorithm does not require any ad-
ditional metadata for its working. The extra overhead is
incurred for maintainingk lists and associating blocks
with them. The lists could be implemented in a more ef-
ficient manner as LRU queues. Even with a naive imple-
mentation the insertion of blocks could be done in con-
stant time. There are more efficient data structures avail-
able in literature [15] that could reduce the performance
time of these operations. The proposed algorithm is sim-
ple and can be easily integrated with the FTL. The list
search for clean blocks is eliminated by a simple mecha-
nism. The free blocks are inserted from the front and the
valid blocks are inserted from behind. This way when-
ever a clean block is needed from a list we can find one
at the front of the list.

The values ofk andm have to be carefully chosen so
that the wear leveling is done in an efficient manner. If
k is too small that would lead to more number of erases
and if k is too big then the variance of erase counts of

the blocks would tend to be higher. An adaptive mecha-
nism where the value ofk is larger initially and reduces
gradually towards the end would be an excellent solution.
Adapting the value ofk avoids the need to explicitly pre-
define the value ofk. After trying various values form
we decided to havem as50% of k. This helped in the
smooth movement of the window.

Garbage collection could be done either in an on-
demand basis or at regular intervals whenever the device
is idle. The garbage collection mechanism we adopted
is as follows. Garbage collection is done when the num-
ber of clean blocks fall below a certain threshold. The
garbage collection is done starting from the blocks in the
lower numbered lists to the blocks in the higher num-
bered lists. The garbage collection stops when the num-
ber of clean blocks is greater than or equal to an upper
threshold. We had two thresholdssoft andhard. When-
ever the number of clean blocks is lesser than thesoft

threshold the garbage collection was triggered and is ex-
ecuted as a background process. When the number of
clean blocks is lesser than thehard threshold we exe-
cuted garbage collection with the highest priority as long
as the

The identification of hot data is another issue. While
sophisticated algorithms are available for hot data identi-
fication like the one proposed in [17] the amount of mem-
ory required is an important concern. We have used a
very simple technique for online identification of hot data
and have shown thatRejuvenator performs as well as
it performs for the ideal offline optimal identification of
hot data. The technique we have used for hot data identi-
fication requires very little memory and can very well fit
in the DRAM.

The algorithm requires the blocks to be reused in many
cases. The reuse of blocks cannot be literally done since
flash memory does not allow in-place updates.In-place
updates requireerase-before-write which introduces sig-
nificant latency. Many solutions have been provided in
literature [18, 6, 24] where data blocks and update blocks
are maintained separately. The update blocks or replace-
ment blocks can be used along with the data blocks to fa-
cilitate the out-of-place updates. We adopted the replace-
ment blocks technique whenever this kind ofin-place up-
dates are required.

Mapping is a very critical factor that affects the per-
formance of wear leveling to a great extent. We adopted
a simple block level mapping technique which maps the
logical block numbers to physical block numbers at the
block level. We are investigating the effects of mapping

12



at a finer granularity, at the page level. Working at a finer
granularity at the page level may lead to improvements
in performance of the flash memory but at the cost of
significant overhead. The page level mapping schemes
require enormous memory [19]. Many hybrid schemes
have been proposed in literature [19, 24, 22, 18] that use a
combination of page level and block level mapping. The
mapping issues by themselves are an extensive research
field and are not the focus of this paper. The integra-
tion of mapping and wear-leveling techniques in a single
system is an interesting issue that we plan to investigate
further.

5 Conclusion

The paper proposes a novel static wear leveling algo-
rithm, named asRejuvenator for flash memory. Reju-
venator algorithm achieves two main goals:(1) reducing
the variance in erase counts of all blocks and(2) reducing
the overhead due to cold data migrations. The first goal
helps to prevent any single block from reaching its maxi-
mum erase count limit sooner than other blocks, while
the second goal helps to reduce the unnecessary data
movements that adversely affect the performance of the
flash memory. Our experimental results show thatReju-
venator outperforms existing best known wear leveling
algorithms. Rejuvenator reduces the variance in erase
count of all blocks by approximately16 times compared
to the TrueFFS algorithm. On the other hand,Rejuvena-
tor reduces the number of forced cold data migrations
by almost 50% compared to the Dual-Pool algorithm.
We have presented the results of our algorithm when
the maximum erase count of the blocks is20K times as
against the original100K times. From the patterns of re-
sults obtained it is obvious that the performance will be
better than the other algorithms when the maximum erase
count is set to100K. The reduction in cold data migra-
tions and improvement in lifetime improvement will be
much higher inRejuvenator when the maximum erase
count of the blocks is set to100K. Based on the obtained
results, we are positive that the proposedRejuvenator al-
gorithm would create an impact on the existing wear lev-
eling policies and would provide a promising solution for
the performance improvement and increase in lifetime of
flash memory.

References

[1] University of Massachusetts Amhesrst Storage

Traces. http://traces.cs.umass.edu/

index.php/Storage/Storage.

[2] Increasing flash solid state disk reliability.Techni-
cal report, SiliconSystems (2005).

[3] Wear leveling in single level cell nand flash
memories,. STMicroelectronics Application
Note(AN1822) (2006).

[4] AGRAWAL , N., PRABHAKARAN , V., WOBBER,
T., DAVIS , J. D., MANASSE, M., AND PANI -
GRAHY, R. Design tradeoffs for ssd performance.
In USENIX (2008).

[5] ANDTEI WEI KUO, L.-P. C. Efficient manage-
ment for large-scale flash-memory storage systems
with resource conservation.Trans. Storage 1, 4
(2005).

[6] BAN , A. Wear leveling of static areas in flash mem-
ory. US Patent ,6732221, Msystems (2004).

[7] CHANG, L.-P. On efficient wear leveling for
large-scale flash-memory storage systems. InSAC
(2007).

[8] CHANG, L.-P., AND KUO, T.-W. An adaptive
striping architecture for flash memory storage sys-
tems of embedded systems. InRTAS (2002).

[9] CHANG, L.-P., KUO, T.-W., AND LO, S.-W.
Real-time garbage collection for flash-memory
storage systems of real-time embedded systems.
ACM Trans. Embed. Comput. Syst. 3, 4 (2004).

[10] CHANG, Y.-H., HSIEH, J.-W., AND KUO, T.-W.
Endurance enhancement of flash-memory storage
systems: an efficient static wear leveling design. In
DAC (2007).

[11] CHIANG , M.-L., LEE, P. C. H.,AND CHANG, R.-
C. Using data clustering to improve cleaning per-
formance for flash memory.Softw. Pract. Exper. 29,
3 (1999).

[12] DO, J.,AND PATEL , J. M. Join processing for flash
ssds: remembering past lessons. InDaMoN ’09:
Proceedings of the Fifth International Workshop on
Data Management on New Hardware (New York,
NY, USA, 2009), ACM, pp. 1–8.

[13] DOUGLIS, F., CÁCERES, R., KAASHOEK, F., LI ,
K., MARSH, B., AND TAUBER, J. A. Storage al-
ternatives for mobile computers. InOSDI (1994).

13



[14] DU, Y., CAI , M., AND DONG, J. Adaptive
garbage collection mechanism for n-log block flash
memory storage systems. InICAT (2006).

[15] GAL , E., AND TOLEDO, S. Algorithms and data
structures for flash memories.ACM Comput. Surv.
37, 2 (2005).

[16] GRAEFE, G. The five-minute rule 20 years later:
and how flash memory changes the rules.Queue 6,
4 (2008).

[17] HSIEH, J.-W., CHANG, L.-P., AND KUO, T.-W.
Efficient on-line identification of hot data for flash-
memory management. InSAC (2005).

[18] KANG, J.-U., JO, H., KIM , J.-S.,AND LEE, J.
A superblock-based flash translation layer for nand
flash memory. InEMSOFT (2006).

[19] K IM , J., KIM , J., NOH, S., MIN , S., AND CHO,
Y. A Space-efficient Flash Translation Layer for
Compact Flash Systems. InIEEE Transactions on
Consumer Electronics (2002), vol. 48.

[20] KOLTSIDAS, I., AND V IGLAS, S. D. Flashing up
the storage layer.Proc. VLDB Endow. 1, 1 (2008),
514–525.

[21] KWON, O., AND KOH, K. Swap-aware garbage
collection for nand flash memory based embedded
systems. InCIT (2007).

[22] LEE, S., SHIN , D., KIM , Y.-J., AND K IM , J.
Last: locality-aware sector translation for nand
flash memory-based storage systems.SIGOPS
Oper. Syst. Rev. 42, 6 (2008).

[23] LEE, S.-W., MOON, B., PARK , C., KIM , J.-M.,
AND K IM , S.-W. A case for flash memory ssd
in enterprise database applications. InSIGMOD
’08: Proceedings of the 2008 ACM SIGMOD inter-
national conference on Management of data (New
York, NY, USA, 2008), ACM, pp. 1075–1086.

[24] LEE, S.-W., PARK , D.-J., CHUNG, T.-S., LEE,
D.-H., PARK , S.,AND SONG, H.-J. A log buffer-
based flash translation layer using fully-associative
sector translation.ACM Trans. Embed. Comput.
Syst. 6, 3 (2007).

[25] SAMSUNG ELECTRONICS COMPANY.
K9NBG08U5M 4Gb * 8 Bit NAND Flash
Memory Data Sheet.

[26] SANVIDO , M., CHU, F., KULKARNI , A., AND

SELINGER, R. NAND Flash Memory and Its Role
in Storage Architectures. InProceedings of the
IEEE (2008), vol. 96.

[27] SHMIDT, D. Technical Note:TrueFFS wear lev-
eling mechanism. Technical Report, Msystems
(2002).

[28] SILBERSCHATZ, A., GALVIN , P., AND GAGNE,
G. Operating System Concepts. John Wiley &
Sons, Inc., 2004.

[29] SYU , S.-J.,AND CHEN, J. An active space recy-
cling mechanism for flash storage systems in real-
time application environment. InRTCSA (2005).

[30] WOODHOUSE, D. JFFS: The Journalling Flash
File System,. Proceedings of Ottawa Linux Sym-
posium (2001).

14


