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Abstract Flash memory is popular among these devices due to its

NAND flash memory has the potential to become thesmall size, light weight, high shock resistance and fast
read performance [4, 15, 16]. To cap all the aforemen-

storage alternative of the future due to its better perfor-. .
. ... tioned advantages flash memory based devices are ex-
mance and low power requirements. However reliabil-

o L . . tremely low consumers of power and hence can help in
ity is still a critical issue in using NAND flash memory =~ " .
. A Pundlng Greener Systems. The popularity of flash mem-

for large scale enterprise applications. The number o )
. . o ory has also extended from embedded devices to laptops,
times a block can be reliably erased is limited in a NAND , . .

. . PCs and enterprise-class servers with flash-based Solid
flash memory. A wear leveling algorithm helps to pre-

vent the early wear out of blocks in the flash memory. ItState Disks (SSD) widely considered as a future replace-

. mdent for magnetic disks [12, 20, 23]. The drive to use
spreads the erase operations evenly across all blocks an ) ; )

. o . NAND flash based Solid State Drives(SSDs) in the en-
prevents any single block from reaching its maximum

erase count limit sooner than other blocks. In attempt—terprlse market s growing faster than ever.

ing to do so the °°'°_‘ data is moved to more worn out Despite all the advantages, the reliability of NAND
blocks thereby reducing the rate of wear in those blocksﬂash memory is a big concern. NAND flash memory

However, the migration of cold data is an expensive OpPsg organized as an array of blocks. A block spans 32-

eration since it induces additional erase operations in th%4 pages [26], where a page is the smallest unit of read

swapping process. To overcome this problem we PrOPOSERd write operations. Flash memory-based storage has

a:]Stat'C_WeEf‘r Ie\lgellng .algorlt_hm, namedmuv?nﬁtorb,l kseveral unigue features that distinguish it from conven-
that maintains the variance in erase counts of the bloc flonal disks. In conventional magnetic disks, the read

within a threshold as well as reduces the cost of the adénd write times are approximately the same. In flash

ditional cold data migrationdRejuvenator uses an adap- memory-based storage, in contrast, writes are substan-

tive scheme that gradually reduces the variance in era%?ally slower than reads. Furthermore, all writes in a flash

counts of the blocks as some of the blocks are approact}hemory must be preceded by an erase operation, unless

Ing tlhelr rr}naxw;um .erase count I|m|ft. Our Expen‘mgntal the writes are performed on a clean(previously erased)
results show thaRejuvenator outperforms the existing block. Read and write operations are done at the page

best known wear leveling algorithms. level while erase operations can only be done at the block

level. Hence with a naive approach, an update to a single
1 Introduction page may require all valid pages in the block to be copied

to another location, erasing the current block and then
With recent technological advances, it appears thatopying the pages back to the current block along with
NAND flash memory has enormous potential to over-the updated page. The last operation may be replaced by
come the shortcomings of conventional magnetic mediamaking changes to the mapping table. This leads to an
The use of flash memory has become ubiquitous in theasymmetry in the latencies for read and write operations.
recent past. Flash memory is widely being used in to+requent block erase operations reduce the lifetime of
day’s smart phones, digital cameras and MP3 playerdlash memory. This is known asear out problem. In



this paper, we address thwear out problem. may wear out sooner than the blocks that store cold data.

Due to the physical characteristics of NAND flash Moreover, the need to increase the efficiency of garbage
memory, the number of times that a block can be reliablycollection makes placement of hot and cold data very
erased is limited. For an SLC (Single Level Cell) flash crucial. Second a natural way to balance the wearing of
memory this number is around 100K times and for anall data blocks is to store hot data in less worn blocks and
MLC(Multi-Level Cell) flash memory it is around 10K cold data in most worn blockhird , most of the exist-
times [4]. Wear leveling algorithms try to even out the ing algorithms focus too much on reducing the wearing
wearing of different blocks of the flash memory. A block difference of all blocks throughout the lifetime of flash
is said to be worn out, when it has been erased the maxniemory. This tends to generate additional migrations of
imum possible number of times. The lifetime of a flash cold data to the most worn blocks. The writes generated
memory is typically considered as the number of writeby this type of migrations are considered as an overhead
operations that can be executed before the first block i@nd may reduce the lifetime of flash memory. In fact, a
worn out. The primary goal of any wear leveling algo- good wear-leveling algorithm only needs to balance the
rithm is to increase the lifetime of flash memory by pre- wearing level of all blocks at the end of flash memory
venting any single block from reaching the 100K erasurdifetime.
cycle limit (here we assume SLC flash). In this paper
we have designed an efficient wear leveling algorithm for
flash memory and evaluated its performance. In this paper, as our main contribution, we propose

In flash memory, some data are very frequently up-a novel wear leveling algorithm, named Rguvenator.
dated. The data that is updated more frequently is definedhis new algorithm optimally performs stale cold data
ashot data, while the data that is relatively unchanged is migration and also spreads out the wear evenly by nat-
defined ascold data. Optimizing the placement of hot ural hot and cold data allocation. It places hot data in
and cold data in the flash memory assumes utmost imless worn blocks and cold data in the more worn blocks.
portance given the limited number of erase cycles of &Storing hot data in less worn blocks will allow the wear-
flash block. If hot data is being written repeatedly to cer-ing level of these blocks to increase and catch up with
tain blocks, then those blocks may wear out much fastethe more worn blocks. Storing cold data in more worn
than the blocks that store cold data. blocks, helps these blocks to cool down as long as the

The existing approaches to wear leveling fall into two relatively lesser worn blocks catch up with their degree
broad categories static anddynamic. Dynamic wear Of hotness. This is a natural way to balance the wearing
leveling algorithms [2, 6, 8] attempt to avoid hot data be-level of each block. Rejuvenator clusters the blocks
ing written to the same block repeatedly so that no sininto different groups based on their current erase counts.
gle block reaches its maximum erase count faster thafhis clustering helpskejuvenator to make very effi-
other blocks. However these algorithms do not attempgient usage of blocks based upon their various levels
to move cold data that may remain forever in a fewof hotness. The basic idea is to store cold data on the
blocks. These blocks wear out very slowly relative toblocks that are erased more number of times and hot
other blocks. This results in a high degree of unevennesgata in blocks that are erased lesser number of times.
in the distribution of wear in the blocks. On the other Rejuvenator places hot data in blocks in lower num-
hand, static wear leveling algorithms [4, 5, 7, 10, 27, 3o]bered clusters and cold data in blocks in the higher num-
attempt to move cold data to more worn blocks thereb),bel’ed clusters. The range of the clusters is restricted
facilitating more even spread of wear. However, mov-Within a threshold value. Our experimental results show
ing cold data around without any update requests incur§hat Rejuvenator outperforms the existing wear level-
overhead. It is important that this expensive work of mi-ing algorithms.
grating the cold data is done optimally and does not cre-
ate excessive overhead.

By carefully examining the existing wear leveling al-  The rest of the paper is organized as follows. Sec-
gorithms, we have made the following observations.tion 2 gives a brief overview of existing wear leveling
First, one important aspect of using flash memory is toalgorithms. Section 3 explainRejuvenator in detail.
take advantage dfot andcold data. If hot data is be- Section 4 provides performance analysis and experimen-
ing written repeatedly to a few blocks then those blockstal results. Section 5 concludes the discussion.



2 Background and Related Work 2.2 Static Wear Leveling Algorithms

The existing wear leveling algorithms classify the data asl® Prevent cold .data from bgcomingqle in a few

hot and cold to make wear leveling decisions. The |Ogi_blocks many static wear leveling techniques have been
cal blocks that are frequently accessed are considered #°pPosed [4, 5, 7, 10, 27, 30]. However this migration
hot and those that stay intact without frequent update§f cold data has to be done optimally. The migration
are called cold. The mapping of logical block addresse£' cold data causes extra writes to be done and is hence
to physical addresses is handled by the Flash TranslatioRXPensive. These extra writes help to maintain the vari-
Layer. The FTL maintains a mapping table that maps2nce in the erase count of all blocks but at the same time
logical addresses to physical addresses. This mappin§troduce significant overhead. A good wear leveling al-
could be done at a fine granularity at the page-level or agorithm should optimize the cost of doing this expensive
a coarse granularity at the block level. Extensive workWork-

has been done in developing efficient wear leveling algo- The Dual-Pool algorithm proposed by Chang [7]
rithms for flash memory. The goal of these wear level-Maintains two pools of blocks-hot and cold. The blocks

ing algorithms is to efficiently place hot and cold data in are initially assigned to the hot and cold pools randomly.

appropriate blocks so that few blocks do not reach theirl N€n as updates are done the pool associations become
lifetime faster than the other blocks. stable and blocks that store hot data are associated with

There are two orthogonal approaches to wear Ievelindhe hot pool and the blocks that store cold data are associ-
ated with cod pool. If some block in the hot pool is erased
beyond a certain threshold its contents are swapped with
1. Dynamic wear leveling: These algorithms achieve those of the least worn block in cold pool. The idea here
wear leveling by repeatedly reusing blocks with is to move the hottest data to the coldest block. The al-
lesser erase counts gorithm succeeds in maintaining the difference in erase
counts of the blocks within a limit. However the there
could be a lot of data migrations before the blocks are
correctly associated with the appropriate pools. The al-
gorithm takes a long time for the pool associations of
Our proposed algorithrRejuvenator fits in the static  blocks to become stable. Also the cold pool resize is
wear leveling algorithm category. In the rest of this based on effective erasure count. The effective erasure
section, first we describe existing dynamic algorithms.count of a block is the number of erases done after the

Next, we describe existing static algorithms. block is associated with cold pool after the swapping
operation is done. Sometimes blocks with high erase

count may have zero effective erase count. When up-
dates are done to these blocks there is no direct check on
Many dynamic wear leveling algorithms have been pro-the erase count of the maximum worn block in the cold
posed in literature e.g. [4, 6, 8]. However dynamic wearpool which might potentially lead to unevenness in wear-
leveling algorithms suffer from the disadvantage that theng. Chang [7] claims that the dual-pool performs better
blocks storing cold data have much lesser erase counthan most other well known wear leveling algorithms and
compared to blocks storing hot data. This might resulthence we have chosen this algorithm to compare our re-
in faster wearing of hot blocks while some blocks havesults.

been erased very little number of times. This unevenness Chang et al. [10] propose a static wear leveling algo-
in the erase counts of various blocks may cause somdthm in which a Bit Erase table is maintained as an ar-
blocks to reach their maximum erase count much fasteray of bits where each bit corresponds2tocontiguous
than other blocks and hence reduces the lifetime of thdlocks. Whenever a block is erased the corresponding bit
flash memory. Henceforth we call blocks with lesseris set. Static wear leveling is invoked when the ratio of
erase counts as cold blocks or young blocks interchangehe total erase count of all blocks to the total number of
ably. Similarly blocks with higher erase counts are calledbits set in the BET is above a threshold. This algorithm
hot blocks or older blocks. In all the dynamic wear lev- still may lead to more than necessary cold data migra-
eling algorithms efficient identification of hot and cold tions depending on the number of blocks in the set*of
data becomes extremely important. contiguous blocks. The choice of the valuekdfieavily

namely:

2. Satic wear leveling: These algorithms attempt to
migrate the cold data into very hot blocks thus let-
ting the hot blocks to cool down.

2.1 Dynamic Wear Leveling Algorithms



influences the performance of the algorithm. If the value
of k is small the size of the BET is very large and hence .

the RAM space required is prohibitively large. However
if the value ofk is higher the expensive work of moving
cold data is done more than often.

Chang and Kuo propose [5] a basic wear leveling al-

gorithm where the hot and cold swapping is done whe

the difference between the erase count of the oldest

block and the youngest block is higher than a predefine

threshold. This threshold check is done on a periodic ba-
sis. Determining the frequency at which this threshold

Ta

ble 1: Summary of some existing wear leveling algo-

A

rithms
Algorithm Cold data Migrations Comments
TrueFFS [27] Periodical Variance in erase counts
is very high
Dual-Pool [7] Threshold triggered More than necessary hot and cold dat:
swappings are done to maintain low
variance in erase counts
BET [10] Threshold triggered No. of cold data migrations

depends on the value of parameter k

Hot-Cold Swapping Periodical No. of cold data
)| algorithm [5] migrations is very high
Rejuvenator Minimal Uses an adaptive mechanism which

controls the variance in erase counts al
limits the number of cold data migration

check is done is a crucial part. If this check is done more
often than necessary it may lead to excessive swappings o o
leading to an almost oscillatory behavior. If it is not done UPdated. This might lead to uneven distribution of wear

at the proper frequency it might lead to inefficient wear@mong the blocks since hot blocks would be recycled
often. Most of the wear leveling algorithms attempt to

leveling.

The TrueFFS algorithm developed by M-Systems [27]
maintains a chain of physical erase units correspondin

to each virtual erase unit. Whenever a virtual erase un

freeze the wearing of hot blocks by preventing garbage

ollection in them. The cold blocks i.e., blocks with

Jesser erase counts therefore are recycled quite often and

is updated a free physical erase unit is allotted from thethey yield lesser number of clean pages.

wear leveling pool. When no physical erase unit is avail-

able in the wear leveling podblding occurs where the

chain of physical erase units corresponding to a virtuaf
erase unit are garbage collected and made into one. Stat(i%I

Agrawal et al. [4] propose a wear leveling algorithm

which tries to balance the trade off between cleaning ef-

iciency and the efficiency of wear-leveling. The recy-
ng of hot blocks is not completely stopped. Instead

wear leveling is triggered at regular frequencies. Therg® Probability of restricting the recycling of a block is
is a possibility that some of the blocks have very highprogresswely increased as the erase count of the block

erase counts compared to other blocks. Here also findin?
an appropriate frequency in which static wear leveling a
has to be done is very difficult. The frequency value is

crucial in achieving efficient wear leveling.

The other wear leveling algorithms like the one used
in JFFS [30] and the algorithm proposed by STMicro- .

electronics [3] have very similar techniques and they ei
ther attempt to move cold data more frequently or suffe

tentially reach their lifetime more quickly than others.

Another important factor affecting the performance
and lifetime of wear leveling algorithms is garbage col-
lection.

blocks) them. Many efficient garbage collection algo-

ever garbage collection and wear leveling do not go han
in hand. Cleaning efficiency of a block could be de-

Garbage collection is the process of retriev-
ing invalid pages from blocks by cleaning (erasing the

nearing the maximum erase count limit. Blocks with
rger erase counts are recycled with lesser probability.
Thereby the wear leveling and cleaning efficiency are

optimized. Static wear leveling is performed by storing

cold data in the cleaned hot blocks and making the cold
blocks available for new updates. The cold data migra-

tion adds 4.7% to the average 10 operational latency.

r

In all the existing algorithms the number of forced

from the disadvantage that some of the blocks could p09OId data migrations is higher than necessary in order

to reduce the variance in erase counts of blocks. Our
proposedrejuvenator algorithm performs the cold data

migrations in a natural manner and at the same time
maintains the variance in erase counts of blocks below

a threshold. Table 2 gives a comparison of the perfor-
mance ofRejuvenator algorithm with the other existing
wear leveling algorithms. The adaptiiRejuvenator al-

rithms have been proposed in literature [9, 14, 21]. HOW?orithm performs better than the existing algorithms in

erms of extra overhead and variance in erase counts.

fined as the ratio of the number of dirty pages to the total
number of pages in the block [4]. Greedy approacheg Rejuvenator Algorithm

of garbage collection try to maximize the cleaning ef-

ficiency. Intuitively hot blocks should be having more In this section, we describe our proposed wear level-
number of invalid pages since they are more frequentlying algorithm,Rejuvenator. Rejuvenator attempts to



overcome the limitations of the existing wear leveling al- 0
gorithms (as described in Section 2). The main goal of
Rejuvenator is to maintain the variation in erase counts

min_wear

of all the blocks within a bound and at the same time
reduce the overhead of static wear leveling by optimiz-
ing the cold data migration. The rest of this section is
organized as follows. Section 3.1 gives an overview of
Rejuvenator. Section 3.2 provides a visual explana-
tion of the algorithm. Section 3.3 explains the working
principle of Rejuvenator in detail. Section 3.4 explains
the mechanism to adapt the main parameter valire
Rejuvenator.

A
[]
3.1 Overview min_wear +{k-1) F — —1 |

The basic idea oRejuvenator is to maintain more fre-
guently accessed data or hot data in less worn blocks ar 100,000
less frequently accessed data or cold data in more wor
blocks in order to control the variance in erase counts oi
the blocks. We identify hot and cold data explicitly. The
definition of hot and cold data is in terms of logical ad-
dresses. These logical addresses are in turn mapped to
physical addresses. We currently work at a coarse granunin_wear be denoted adiff. Blocks that store hot pages
larity at the block level. The difference between the eraseare considered hot blocks and blocks that store only cold
counts of any two blocks is maintained within a thresholdpages are considered col¢hin_wear + m is an inter-
k. The value oft is initially large and is reduced gradu- mediate value betweenin_wear andmaz_wear. For
ally as the blocks are reaching their maximum lifetime. experimental purposes the valuerafis half of &.
Rejuvenator maintainsk lists of blocks. At any point
of time the difference between the maximum erase couné 2 Visualization
of any block and the minimum erase count of any block ™"
is less than or equal to the threshdid Every block is  The working of the algorithm could be visualized by a
associated with a list whose number is equal to the erasgoving window where the window size is alwagsas
count of the block. Initially all blocks are associated with in Figure 1. The shaded boxes represent the lists and the
list number0. As blocks are updated they get promotedplocks are associated with the lists. The different levels
to the higher numbered lists. The blocks are queued if shades represent the different levels of hotness. The
LRU order in each list. darker boxes represent the lists containing hot blocks and
Every list can have three types of blockalid blocks,  the lightly shaded boxes represent lists that have cold
invalid blocks andclean blocks. The definition of block  blocks. As the window moves its movement could be
types is as follows. A block is classified as valid only if restricted on both ends. The window movement could
all pages in it are valid. Similarly a block is classified be restricted in the lower end due to the accumulation of
as invalid if one or more pages in the block are invalid. cold data in some of the blocks. The valuenofn_wear
Blocks that have all clean pages in them are clean blockssither does not increase any further or increases very
The blocks in the lower numbered lists have hot data anglowly. The movement of the window could also be re-
the blocks in the higher numbered lists have cold datastricted at the higher end. This happens when there are
Garbage collection reclaims the invalid blocks and makes lot of invalid blocks in themax_wear list and they
them clean. are not garbage collected. In either case the values of
Let us denote the minimum erase count of all blocks asnin_wear andmazx_wear should increase by so that
min_wear and the maximum erase count of any block asthe window movement is smooth. This is achieved by
mazx_wear. Let the difference betweemnax_wear and  Algorithm 2 as described in Section 3.3.

IR
I
I

min_wear+ (m-l)

Figure 1: Working of Rejuvenator algorithm



If no clean blocks are found in the higher numberedAlgorithm 1 Rejuvenator Wear Leveling Algorithm
lists it is an indication that there are invalid blocks irt lis % if (min-wear < erase_count < min_wear + m)then
min_wear+(k—1) and they cannot be garbage collected 3. (giock is hotythen

since the value ofliff would exceed the threshold. The 451: Reuse the current block
. . ) . ©oel
window movement is restricted and hence Algorithm 2 3. *°
takes over. The blocks in lishin_wear may still have 7: if (A clean block is available in one of the lists starting from
. . . . min_-wear + (k — 2)toe + 1) then
hot data since the movement of the window is restrictedg. Use the clean block and clean the current block.
at the higher end only. Hence data in all these blocks are: else
. . 10: Reuse the current block
moved to blocks in other hot-lists. 11 end if

Similarly when no clean blocks are available in the 12 | end if
. . . . . else
lower numbered lists the window movement is restricted; 4.

at the lower end. This is an indication that cold data is re15:  if (min.wear+(m—1) < erase_count < min_wear+(k—2))

.. A . then
maining stale at the blocks in list numbelin_wear and  14:
so they need to be moved to higher numbered lists. Thé’: if (Blockiis cold)then
L i . : Reuse the current block
blocks in list numbefnin_wear are cleaned. This makes 1g: else

these blocks available for storing hot data and at the samg:

. . . . . if (A clean block is available in one of the lists starting from
time increasing the value afin_wear by 1. This makes

min_wear to min_wear + (m — 1)) then

room for garbage coIIecting in theear_wear list and 22: Use the clean block and make the current block invalid
K . else

hence makes more clean blocks available for cold data ag. Invoke Data Migration Algorithm

well. 25: end if

26: end if
The algorithm also takes good care of the fact that7:  endif I

some data which is cold may turn hot at some point ofggf else
time and vice versa. If data that is cold is turning hot30: if (erase_count = min_wear + (k — 1)) then

then it would be immediately moved to one of the blocks3L: ) ) . . ) )
32 if (A clean block is available in any of the lists starting from

in lower numbered lists. Similarly cold data would be min_wear + (k — 1) to min_wear + m) then

moved to more worn blocks by the algorithm We find 33: Use the clean block and make the current block invalid
. . . ) ’ ) : else

that the identification of hot and cold data is an integralss: Invoke Data Migration Algorithm

part of the algorithm. Many excellent algorithms for hot g?f endeirf‘d i

and cold data identification have been proposed in literss: end it

ature [17 11. 29 8] The performance of the algorithm392 if (Numberofcleanblocks < Lowerthreshold) then

) T T 40:  Garbage collection is done untiNumberofcleanblocks =
is however not seriously affected by the accuracy of the Upperthreshold

hot cold data identification mechanism. This is becausé?: endif

at some point of time when a page is identified as hot it is

brought to one of the blocks in the lower numbered lists.

) o We call the lower numbered lists st —lists and the

No stale cold data is allowed to reside in blocks belong-higher numbered lists asld—Llists. Algorithm 1 clearly

ing to lower numbered lists. This mlgrgtlon is done in A tries to store hot data in blocks in the hot-lists numbered

more natural manner rather than forcing the movemenf, o i ear to min wear + (m—1). These are the

of stale cold data. blocks that have been erased lesser number of times. Let
us consider an update to one of the valid blocks.d st

3.3 Working Principle the erase count of the block that is being updated.

The blocks that have their erase counts beree%_S_l Hot-Lists

min_wear andmin_wear+ (m—1) are used for storing

hot data and the blocks that belong to higher numberedhe line numberg — 13 in Algorithm 1 show the steps
lists are used to store cold data in them. This is the keyaken when an update is done to a block in the lower
idea behind which the algorithm operates. Algorithm 1numbered lists fromnin_wear to min_wear + (m—1).
depicts the working of the proposed wear leveling tech-When a hot block in the lower numbered lists is updated
nigue. Algorithm 2 shows the static wear leveling mech-the block is reused. This is done to retain the hot data in
anism. the blocks in the lower numbered lists. When the update



is to a cold block in the lower numbered lists we write Algorithm 2 Data Migration Algorithm
to a clean block from list numbenin_wear + (k —2) 1: if (No clean blocks are available in listsin_wear + m to min_wear +
down to list number + 1 and clean the current block. . 2/ ten
+ -2 Move the contents of list numbenin_wear to clean blocks in lists
If no clean block is available we reuse the current block. s min-wear + 1tomin.wear + (m — 1)
. . . . . . Clean the blocks in listnin_wear
This way the cold data is placed in a block in the high- . o.gip oo e
est possib|e numbered list. We clean the current block sc: if (No clean blocks are available in listsin_wear to min_wear+m—1)
. . then
that it could be used for storlng hot data later. The rea'G: Move the contents of blocks in listnin_wear to blocks in lists
son behind searching for clean blocks up to list nunaber min_wear + mtominwear + (k — 2)
is that initiall Il block inthe | b d list 7. Clean the blocks in list numbenin_wear
IS that inially a OCKs are In the lower numbered lists g Garbage collect in list numbenin_wear + (k — 1)
and there is a chance that no clean blocks are available if: endif
the higher numbered lists. Hence we allow some of the

cold data to be present in the blocks in lower numbered

lists. This condition quCkly ChangeS as invalid blocks counts at a lower value. But this m|ght cause a lot of

accumulate in the higher numbered lists and garbage cofarbage collection activities and static cold data move-
lection retrieves them. Thus cold data could be stored ifments. A larger value of: on the other hand would

the higher numbered lists. enable performing the writes in a more flexible manner
but the variance in the erase counts of blocks would be
3.3.2 Cold-Lists higher. An intuitive approach would be to maintain the

value ofk larger initially when the erase counts of most
of the blocks is very less than tH®0K erasure count
limit. But as more writes are being done the variance in
erase counts has to be maintained within a smaller range

Lines 14 — 26 of Algorithm 1 show the steps followed
when the update is to a block in the listan_wear +m
tomin_wear+ (k—2). When the update is to a hot block

we try to find a clean block in one of the lower numberedand hence the value df has to be reduced gradually.

lists. The current block is made invalid and stays with- .
. . As the blocks are very close to reaching 8 K erase
out any further updates until garbage collection cleans

the block. When the update is to a cold block the curren count,the value of has to be made very small. The idea

block is reused. When no clean blocks are available fo})ehlnd adapting the value éfis that initially it is not

. L . necessary to trigger the static wear leveling mechanism
the cold data static wear leveling is invoked by calling y 99 . ) 9
_ . . ..~ very often and the variance in the erase counts could as
Algorithm 2. The need to invoke static wear leveling is . . .
. . . o well be large. But a& is decreased static wear leveling
explained in Section 3.2. When a block in list number . . .
. . . would increasingly be triggered and the erases are more
min_wear + (k — 1) is updated it is moved to one of o . L )
. . : evenly distributed. This helps in significantly reducing
the clean blocks in the higher numbered lists. If no clea "
. . o ._._the additional overhead due to unnecessary forced cold
blocks are found in the higher numbered lists i.e. lists

data migrations in the flash memory initially when not
numbered fromnin_wear + m to min_wear + (k — 2) g y y

. .. .. many update operations have been performed.
the Algorithm 2 is invoked. We can see that the list yup P P
numbermin_wear + (k — 1) predominantly has either In order to study the effect of adaptikgvith the avail-
cold blocks or invalid blocks. There could also be cleanable traces we scaled down the maximum erase count

blocks that are the result of garbage collection. The numlimit from 100K to a smaller valug20K) and as the
ber of valid blocks in the list numbenin_wear+(k—1)  blocks reach the maximum erase count limit we gradu-
is relatively much smaller than the number of blocks inally reduce the value of the parameter We adopted
the other lists. This helps to maintadiff within the @ simple adapting mechanism. We reduce the value of
thresholdk. Garbage collection has to be done carefully.k proportional to the difference between the maximum
The invalid blocks in the list numbenin_wear+(k—1) ~ €rase count anchaz_wear. Let this difference be de-
are not garbage collected. This is to ensure that garbageoted adife_diff. In our experiments we fixed the value

collection does not increase the valuediff beyondk:. of k at10% of life_diff. The higher the value dffe_diff
the higher is the value df. As the value ofnax_wear

reaches closer to maximum lifetime of the blocks, the
value ofk decreases gradually. Section 4 shows experi-
The value ofk controls the distribution of erase counts. mental results for the cases when the valué &f fixed

A smaller value ofk would keep the variance in erase and when the value df adapts itself.

3.4 Adapting Parameter Value



4 Performance Evaluation reaching the maximum erase count faster than the other

blocks.
This section is organized as follows. Section 4.1 de-

scribes the simulation environment and the experimentah e
) : .2 Hot Data Identification
setup. Section 4.3 analyzes the experimental results.
The identification of hot data is an integral part of the
4.1 Simulation Environment Rejuvenator algorithm. We used two different meth-
) ) ods to identify hot data in our experiments. The first
We developed our own trace driven simulator and con-,,a was an offline optimal algorithm. Here we assumed

ducted our experiments on different trace patterns. Wep,; \e knew the access patterns beforehand and deter-
simulated the behavior of a typical NAND flash mem- inaq the logical block addresses that are hot. This

ory like maximum lifetime, erase before write and map- .o pe considered as the ideal case algorithm for iden-
ping tables. We used the trace data from the UMass tracﬁrying hot data and hence is the best for the perfor-

repository [1] for our experiments. The UMass trace j,ance of theRejuvenator algorithm. In the second

repository has representative workloads for various enViéIgorithm we determined the hot data with the help of

ronments. We chose write intensive traces to study the,o history of the data accesses. A simple scheme was

performance of our algorithm. In order to better ana-jniemented for online identification of hot data with
lyze the performance of wear leveling we scaled down

. i . a moving window of fixed size. The most frequently
the maximum erase count value20k’. The simulation ;seq plock numbers within the window are considered

stops when the erase count of any single block reachegs pot for the future accesses. Of course the performance

this value. Algorithm 1 requires reuse of blockshen- ¢ e moving-window based scheme is dependent on
ever such in place updates are required in our algorithm 6 \orkloads used. However our intention is to show

we used replacement blocks for these updates and later ot the Re juvenator algorithm performs well even if

reclaimed the blocks during garbage collection. The per-  q pot data identification scheme performs moderately
formance of our algorithm was compared with two otherwe”_ The value ofiff is never more than the value bf

well known wear leveling algorithms, the dual-pool algo- 504 hence the imperfection in the hot data identification
rithm and the TrueFFS wear leveling algorithm. The Tru- g hame is tolerable.

eFFS wear leveling algorithm is one of the widely used
algorithms proposed byl-Systems [27]. [7] claims that

the performance of the dual-pool algorithm is compara:
tively much better than most other existing wear levelingin this section we present the results of our simulation.
algorithms. We observed that dual-pool indeed succeedas mentioned in Section 4.1 we compared the results

in maintaining the variance in erase counts of the blocksf our algorithm with results of two other algorithms
within a threshold and improving the lifetime of the flash namelyTrue P F'S anddual — pool.

memory even though it had its own drawbacks. Hence

dual-pool algorithm is a good choice to compare ourre-4 3 1 [ ifetime Measurement

sults. The most important metrics that we used for per-

formance evaluation were the lifetime of the flash mem-

ory and the number of migrations generated due to statidable 2: Number (in Millions) of write requests serviced
wear leveling. We also measured the mean erase count @Financial-1 Trace)

4.3 Experimental Results

all blocks and the standard deviation in the erase counts. Max.Erase | MaxErase | Max Erase
. count=8K | count=15K | count=20K
We have observed and presented the number of writes TrueFFs 110.32 345 4205
that can be done before a single block reaches various____Bual-Pool 1323 364.1 4751
Rejuvenatork=30) 130 .1 363 486.4
values of erase countX, 15K, 20K). In other words Rejuvenatok=50) 1293 3607 1852
we measure how quickly a single block reaches the maxi- Rejuvenator(Adaptivé:) 135.2 3711 573.6

mum erase count which is a very critical measure of eval-

uation of any wear leveling algorithm. This, according We defindifetime as the number of write requests that
to us, is the most appropriate measure of lifetime of flastcan be serviced before any single block reaches its max-
memory. The most important objective of any wear lev-imum erase count. Table 2 shows the performance pa-
eling algorithm should be to avoid any single block from rameters for the various algorithms for Finandidlrace.



Table 3: Number (in Millions) of write requests serviced Table 5: Adaptive k(Hot-cold Identification based on his-

(Financial-2 Trace) tory)
Max.Erase | Max.Erase | Max.Erase Std Dev | Cold Data Migrations | Lifetime
count=8K | count=15K | count=20K Financial 1 2.81 38K 563.3M
TrueFFS 133.2 362.2 427.5 Financial 2 29 37K 565.2M
Dual-Pool 1355 368.1 478.1 Web Search 2.95 38K 563.7M
Rejuvenatorg=30) 135.1 367.3 483.8
Rejuvenatork=50) 134.6 366.5 482
Rejuvenator(Adaptivé) 136.4 374.2 574.6

Table 4: Number (in Millions) of write requests serviced
(Web Search Trace)

Max.Erase | Max.Erase | Max.Erase " Truefrs
count=8K | count=15K | count=20K Dual Pool
TrueFFS 126.2 367.2 410.8 ™ Rejuvanator
Dual-Pool 138.5 3715 456.5
Rejuvenatorg=30) 136 .7 369.7 472
Rejuvenatork=50) 135.9 367.9 470.2
Rejuvenator(Adaptivé) 142 376.8 568.3 Financial 1 Financial2 WebSearch

The performance oRRejuvenator was first evaluated
with fixed values ofk(k = 30,k = 50). The perfor-
mance was also measured whers adaptive and de-
creases gradually. Similarly Table 3 and Table 4 show

the performance of the various algorithms for Financial

2 and Web Search traces respectively. The Tables 2, 3, 20K) andmaz_wear. For experimental purposes we
show the number of write requests serviced before any€t the minimum value of to be3. This choice of the
single block reaches an erase countséf, 15K and minimum value ofk is driven by the choice of the pa-
20K. This is a measure of how quickly a single block fameterm. We tried different values fom and finally
would reach the maximum erase count limit. We see thafound satisfactory results when was50% of k. Hence
when the value of: is fixed the rate at which the erase * has to be atleaskfor anm to exist.

count of 8K is reached is almost the same as the rate at |t can be observed from the Tables 2, 3, 4 that the erase
which the erase count @b K is reached wheh is fixed.  count ofSK is reached faster and the erase courltsdf
This is because we keep the variance in erase counts @ reached slower. In other words the number of write re-
all blocks within a fixed threshold from the beginning till quests serviced before any block reaches an erase count
the end. This also leads to the increased number of coldf 8 k" is much lesser compared to the number of write re-
data migrations. quests serviced before any block reaches an erase count
Tables 2, 3, 4 also show the performance parametersf 15/ . The erase count 0K is reached still slower.
for the case when the value &fis adapted according The behavior is as expected because when the value of
to the maximum erase count value. In Tables 2, 3, 4 is high the variance in erase counts is higher. Hence
the results presented fdtejuvenator are for the case the erase count K is reached faster. As the value
when the hot data identification is done based on thef maz_wear is increasing the value of is gradually
assumption that future write requests are known beforereducing. The variance in erase counts is reduced and
hand. Table 5 shows the performance parameters whefience any single block reaches the erase counf Af
the hot cold data identification is based on the history ofmuch slower than it reached an erase cour®ff Sim-
recent write requests aridis adaptive. In either case ilarly any single block reaches an erase coun2@i
k is initially very large and towards the end it is made much slower than it reaches an erase countsdt be-
smaller. From Table 5 we can see that the performanceause the value dfis very small towards the end and the
of Rejuvenator is not affected much by the hot data variance in erase counts is maintained within the thresh-
identification mechanism used. old much more aggressively. Hence the point at which
At any point of time the value of is 10% of life_diff ~ any single point reaches the maximum erase count limit
which is the difference between maximum erase counbf 20K is delayed as much as possible.

Figure 2: Lifetime Comparison(In terms of Million
Write Requests)
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Figure 4: Distribution of erases in all blocks in Dual-Pool
(k=238 Figure 6: Distribution of erases in all blocks in Rejuve-
nator with fixedk = 50

4.3.2 Distribution Of Erase Counts

. T implementation of Dual-Pool algorithm. The Dual-Pool
Figure 3 represents the distribution of erase counts . o L
. . algorithm succeeds to maintain the erase counts within

among the blocks in the TrueFFS wear leveling algo-

i Y fa threshold limit but at the cost of more than necessary
rithm. We have showed the erase-count distribution of .

. ) . . migrations of cold data. The threshold was seg @nd
the first few blocks in order to give a clear picture of the

. hence the difference in erase counts of any two blocks is
erase count distribution. We see that some of the blocks y

: . mosts.
have very high erase counts than others. This is because

. ) Figur hows the distribution of er. nts in th
the TrueFFS algorithm swaps the data in hot and cold gure 5,5 ows the distribution of e ase_ co_u S ©
. : case of Rejuvenator when the value of is fixed at
blocks only on a frequency basis. This may lead to some . .
. ) . 30. We see that the difference between maximum erase
blocks having very high erase counts while others have . .
. . count and minimum erase count of any two block3(s
a very little erase count. This affects the performance_, o
. Figure 6 shows the distribution of erase counts when the
of the algorithm because some blocks could reach their . .
alue ofk is 50. It can be observed that the valuediff

lifetime much faster and hence this reduces the overal .

lifetime of the flash memory. When cold data is turning IS not higher thark = 50.
hot the migration of that data into a younger block de-
pends on the frequency on which the swapping is doneTable 6: Standard Deviations in erase counts of all
Before this swapping is done the data is already hot andblocks)

the block has been erased considerable amount of times Financial 1 | Financial2 | WebSearch
TrueFFS 12.2 14.2 13.3
Dual-Pool 3.0 3.1 29
Figure 4 shows the distribution of erase counts in the_Rejuvenator|  2.75 2.7 25
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4.3.3 Cold Data Migrations

PR S Figure 10 shows the comparison of cold data migrations

5 CTET Y in the case of the three different algorithms.

4 5"\\ I In the case of TrueFFS the number of cold data migra-

s \\\ _________ Fimancialz tions done is very large. The Dual-Pool algorithm does

2 Websearch not utilize the blocks that are 'medium’ hot. As soon

1 as the difference between two blocks is higher than the

0 threshold value the swapping is done between most worn
B e 20 and least worn blocks. The blocks that have intermediate

values of erase counts are not utilized according to their
hotness levels. When cold data is caught up in a block
with an intermediate value of erase count it takes a long
time before the data is identified as cold and migrated to
a more worn block. Before this happens a lot of hot and
cold swappings are done. But if the cold data was iden-
20020 tified and placed in a more worn block the medium worn

20000 blocks could be used to store hot data thereby reducing

the forced cold data movements considerably.

A mechanism for explicit identification of hot and cold
ot oo data with a certain degree of accuracy and the knowledge
— mRejuvanstor of the hotness levels of blocks could reduce the exces-
sive cold data migrations and improve the performance
of wear leveling which is precisely whadtejuvenator
does. We see that the cold data migrations are almost
48% lesser compared to dual-pool abt lesser com-
pared to TrueFFS algorithm. As the valueiaé adapted
we observed that the number of cold data migrations in-
creases. Figure 9 shows the number of cold data migra-

Henceforth in all the results we show the hot da’[aiden—tlons done that had been done at various points of the

tification mechanism that we used is based on the Win_smulaﬂon a_nd the corresponding valueskoat Fhos_e
dow of recent accesses and the valué &f adaptive. pomts. We find that the number of cold data mlgratlpns
o increases more steeply as the valué afecreases. This
Table 6 shows the standard deviation in the erasgy oynected because as the valué gfadually decreases
counts of the blocks for the various algorithms for thethe size of the window also reduces and the window

three different traces. \We see that in the case of Tz ovement is restricted quiet often than when the value

eFFS algorithm 'the variance in erase counts is very highyt 1. is larger. Also the increased number of migrations,
Dual-pool algorithm successfully controls the variance st e done as the blocks reach their maximum possible

in erase counts by hot-cold data swapping. In the casg ase count, translate directly into improved lifetime for
of Rejuvenator algorithm the standard deviation is ini- the flash memory

tially very high since the value df is large initially. As

the value ofk decreases gradually the variance in erase .
count also reduces. This is shown in Figure 7. 4.4 Implementation Issues and Overheads

Figure 7: Standard Deviation in erase counts of all
blocks(Rejuvenator)
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Figure 8: Mean erase count of all blocks

Figure 8 shows the comparison of mean of erase
counts_ of all bIocI_<s. It can be seen that the.m_ear? erase Table 7: Performance Issues
count is very low in the case of TrueFFS. This indicate§ Algorithm Overheads
TrueFFS Swapping
that even when mqst blocks ayeung a few blocks have Bual-Pool Swapping, Quete Tnserion
reached their maximum value of erase count. It can b& Rejuvenator | Swapping, List search for clean blocks,List inserti
seen that dual-pool anflejuvenator succeed in main-

taining the mean erase count at a higher value. Table 4 shows the issues that affect performance of

=}
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- the blocks would tend to be higher. An adaptive mecha-

- nism where the value df is larger initially and reduces

" /d gradually towards the end would be an excellent solution.

s / Adapting the value of avoids the need to explicitly pre-

0 / Financial 1 define the value ok. After trying various values fom

w0 7 e we decided to haven as50% of k. This helped in the

" == smooth movement of the window.

10 Call Garbage collection could be done either in an on-

o demand basis or at regular intervals whenever the device
toca S0 a0 0 : is idle. The garbage collection mechanism we adopted

is as follows. Garbage collection is done when the num-
Figure 9: No.of Cold data migrations at different valuesber of clean blocks fall below a certain threshold. The
of k garbage collection is done starting from the blocks in the
lower numbered lists to the blocks in the higher num-
bered lists. The garbage collection stops when the num-
ber of clean blocks is greater than or equal to an upper
threshold. We had two thresholgisft andhard. When-
ever the number of clean blocks is lesser thansig
:,‘F:S‘ threshold the garbage collection was triggered and is ex-
u Rejuvanator ecuted as a background process. When the number of
clean blocks is lesser than tterd threshold we exe-

cuted garbage collection with the highest priority as long
Financial 1 Financial2 Web Search as the
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The identification of hot data is another issue. While
) ] ] sophisticated algorithms are available for hot data identi
Figure 10: Comparison of number of cold data migra-ficasion like the one proposed in [17] the amount of mem-
tions(In terms of thousands of migrations) ory required is an important concern. We have used a
very simple technique for online identification of hot data
the flash memory while using the three different wearand have shown thatejuvenator performs as well as
leveling algorithms. it performs for the ideal offline optimal identification of
The Rejuvenator algorithm does not require any ad- hotdata. The technique we have used for hot data identi-

ditional metadata for its working. The extra overhead isfication requires very little memory and can very well fit
incurred for maintaining: lists and associating blocks in the DRAM.
with them. The lists could be implemented in a more ef- The algorithm requires the blocks to be reused in many
ficient manner as LRU queues. Even with a naive implecases. The reuse of blocks cannot be literally done since
mentation the insertion of blocks could be done in con-flash memory does not allow in-place updatasplace
stant time. There are more efficient data structures availupdates requireerase-before-write which introduces sig-
able in literature [15] that could reduce the performancenificant latency. Many solutions have been provided in
time of these operations. The proposed algorithm is simliterature [18, 6, 24] where data blocks and update blocks
ple and can be easily integrated with the FTL. The listare maintained separately. The update blocks or replace-
search for clean blocks is eliminated by a simple mechament blocks can be used along with the data blocks to fa-
nism. The free blocks are inserted from the front and thecilitate the out-of-place updates. We adopted the replace-
valid blocks are inserted from behind. This way when-ment blocks technique whenever this kindreplace up-
ever a clean block is needed from a list we can find onelates are required.
at the front of the list. Mapping is a very critical factor that affects the per-
The values ok andm have to be carefully chosen so formance of wear leveling to a great extent. We adopted
that the wear leveling is done in an efficient manner. Ifa simple block level mapping technique which maps the
k is too small that would lead to more number of erasedogical block numbers to physical block numbers at the
and if k is too big then the variance of erase counts ofblock level. We are investigating the effects of mapping

12



at a finer granularity, at the page level. Working at a finer
granularity at the page level may lead to improvements
in performance of the flash memory but at the cost of

significant overhead. The page level mapping schemes

(2]

require enormous memory [19]. Many hybrid schemes
have been proposed in literature [19, 24, 22, 18] that use a[3]

combination of page level and block level mapping. The

mapping issues by themselves are an extensive research
field and are not the focus of this paper. The integra-

tion of mapping and wear-leveling techniques in a single

system is an interesting issue that we plan to investigate

further.

5 Conclusion

(5]

The paper proposes a novel static wear leveling algo-

rithm, named asRejuvenator for flash memory. Reju-
venator algorithm achieves two main goald) reducing
the variance in erase counts of all blocks édreducing

(6]

the overhead due to cold data migrations. The first goal
helps to prevent any single block from reaching its maxi- [7]

mum erase count limit sooner than other blocks, while

the second goal helps to reduce the unnecessary data
movements that adversely affect the performance of the

flash memory. Our experimental results show Rgu-

venator outperforms existing best known wear leveling
algorithms. Rejuvenator reduces the variance in erase

count of all blocks by approximately6 times compared
to the TrueFFS algorithm. On the other haRdjuvena-

(8]

9]

tor reduces the number of forced cold data migrations

by almost 50% compared to the Dual-Pool algorithm.

We have presented the results of our algorithm when

the maximum erase count of the block6EX times as

against the original 00K times. From the patterns of re-
sults obtained it is obvious that the performance will be

Traces. http://traces.cs. unass. edu/
i ndex. php/ St or age/ St or age.

Increasing flash solid state disk reliabilityechni-
cal report, SliconSystems (2005).

Wear leveling in single level cell nand flash
memories,. STMicroelectronics  Application
Note(AN1822) (2006).

4] AGRAWAL, N., PRABHAKARAN, V., WOBBER,

T., Davis, J. D., MANASSE, M., AND PANI-
GRAHY, R. Design tradeoffs for ssd performance.
In USENIX (2008).

ANDTEI WEI Kuo, L.-P. C. Efficient manage-
ment for large-scale flash-memory storage systems
with resource conservationTrans. Storage 1, 4
(2005).

BAN, A. Wear leveling of static areas in flash mem-
ory. USPatent ,6732221, Msystems (2004).

CHANG, L.-P. On efficient wear leveling for
large-scale flash-memory storage systemsSA@
(2007).

CHANG, L.-P., AND Kuo, T.-W. An adaptive
striping architecture for flash memory storage sys-
tems of embedded systems.RMAS (2002).

CHANG, L.-P., Kuo, T.-W., AND LO, S.-W.
Real-time garbage collection for flash-memory
storage systems of real-time embedded systems.
ACM Trans. Embed. Comput. Syst. 3, 4 (2004).

] CHANG, Y.-H., HSIEH, J.-W.,AND KuO, T.-W.

better than the other algorithms when the maximum erase

count is set td 00K . The reduction in cold data migra-

tions and improvement in lifetime improvement will be
much higher inRejuvenator when the maximum erase

count of the blocks is set 0K . Based on the obtained
results, we are positive that the propo&eflivenator al-

(11]

gorithm would create an impact on the existing wear lev-[12]

eling policies and would provide a promising solution for

the performance improvement and increase in lifetime of

flash memory.
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