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Abstract
NAND-based flash memory has become a prevalent storage
media in many storage systems for supporting big data ap-
plications due to its fast access time and higher performance.
There are trade-offs between lifetime and access latencies in
NAND-based flash memory. By setting up different incremen-
tal step pulse programming (ISPP) values and threshold volt-
ages, these trade-offs can be exploited. Recently, researchers
use these trade-offs to improve either the performance or the
lifetime of flash memory. However, these existing studies
mostly based on simple heuristics.

In this paper, we first develop a comprehensive model of
different physical regions according to their ISPP values and
threshold voltages. Then a new Elastic Flash Management
scheme, called EFM, is proposed to allocate and migrate
data in these regions to improve the overall performance
and prolong the lifetime of flash memory at the same time. A
Long-Term Classifier (LT-Classifier) and a Short-Term Clas-
sifier (ST-Classifier) are proposed to decide which region to
allocate/migrate the incoming requests based on their data
access patterns in the past and read/write latencies of each
region. Moreover, as flash memory wearing out after certain
usage, the EFM scheme can be adjusted based on the changed
read/write latencies to further improve the performance. To
prolong the lifetime of flash memory, we propose a reduced
effective wearing management by scheduling write-intensive
workloads to the region with a reduced threshold voltage. In
our experimental results, the EFM scheme can reduce the av-
erage read/write latencies by 53.9% - 2.96x when compared
to those of the previous studies.

1 Introduction
NAND-based flash memory is playing an important role in
today’s storage systems from mobile devices to large-scale
data-centers. Compared to magnetic recording based drives,
it offers the advantages of high performance and light weight.
The current trend of the flash memory is to increase its density
to achieve high capacity by introducing more levels (hold-

ing several bits) in a cell including multi-level cell (MLC),
triple-level cell (TLC), and quad-level cell (QLC). However,
with the increasing bit-density, the reliability of flash memory
is decreased [1–4]. As a result, the lifetime of flash memory
is shortened due to a decreased maximum Program-Erase
(PE) cycle. On the other hand, researchers use Error Correc-
tion Codes (ECC) such as Low-Density Parity-Check codes
(LDPC) to make data accessible with higher Raw Bit Er-
ror Rates (RBERs) thus prolong the lifetime of flash memory.
Those error correction processes need a long latency to decode
data, thus resulting in degraded flash access performance.

There are two main trade-offs in NAND-based flash mem-
ory. One is between the performance of read and write. For ex-
ample, different incremental step pulse programming (ISPP)
values [5–8] can impact both read and write latencies. With a
larger ISPP value, the program process (write operation) has
less iterations and thus achieves a lower write latency. How-
ever, a larger ISPP value increases the RBERs of programmed
memory cells and thus results in a higher read latency. The
other trade-off is between the lifetime of NAND-based flash
memory and its access latencies. With a low program thresh-
old voltage, the RBERs of memory cells are generally in-
creased and the maximum number of PE cycles of those cells
is also increased. Therefore, a lower threshold voltage causes
a higher read latency but longer lifetime of flash memory. By
setting up different ISPP values and threshold voltages in
several physical regions, it creates a more flexible environ-
ment for flash memory to manage data since each region has
different effective wearing, and read/write latencies. There-
fore, these trade-offs can be used to further improve the per-
formance and lifetime of flash memory by allocating and
accessing data from different regions.

According to these two trade-offs, several previous stud-
ies [8–12] used different ISPP values and different threshold
voltages in flash memory to improve either access perfor-
mance or lifetime of flash memory. For example, Li et al. [10]
physically split flash memory into three regions. That is, a
region with a lower write latency and a higher read latency,
a region with medium read/write latencies, and another with
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a lower read latency, but a higher write latency. They used a
simple heuristic by classifying I/O requests with their most
recent consecutive access patterns like WW, WR, RW, and
RR (W: write; R: read) to place them into the three regions
to improve the performance and lifetime of flash memory.
Pan et al. [8] explored a device model of flash memory and
re-setting ISPP values of flash memory to improve its write
performance. Luo et al. [12] proposed the WARM scheme to
improve flash memory lifetime by separating data that writ-
ten many times (write-hot data) from none or fewer times
(write-cold data) into two separate queues within a monitor-
ing window. The write-hot data does not need to be retained
for a longer period such that the lifetime of flash memory
can be lengthened. Another class of studies [13–16] generally
focuses on the classification of data access patterns. For ex-
ample, HOTIS [16] was proposed to classify data into hot and
cold clusters based on the access frequency and the time in-
terval of adjacent write requests. Therefore, the performance
of flash memory can be improved by reducing the overhead
of garbage collection.

However, these classification schemes are not suitable for
accurately allocating data into different regions of flash mem-
ory. In order to obtain higher performance by allocating data
into physical regions with different ISPP values and thresh-
old voltages, we have to consider the differences between
write/read latencies of each region and data access patterns.
Moreover, with memory wearing out, the read latency of flash
memory is continuously increased. A static classification
based on the initial situation may not be able to correctly
allocate data to the region with the current lowest access cost
due to the changed latency.

In this paper, the proposed Elastic Flash Management
scheme, called EFM, targets to improve the overall perfor-
mance by allocating data to several physical regions with
different write/read latencies. A Long-Term Classifier (LT-
Classifier) is proposed to separate incoming requests based
on accumulated read/write sizes and the latencies of different
physical regions. Then, a Short-Term Classifier (ST-Classifier)
calibrates the LT-Classifier based on short-term access pat-
terns. The results of both classifications are considered to
decide where to allocate a given data. Consequently, the
EFM scheme is capable of better predicting where to allo-
cate/migrate incoming requests. A migration checker is also
developed to reduce migration overhead by filtering out un-
necessary migrations of data. Moreover, as the NAND-based
flash memory wears out, the LT-Classifier of the EFM scheme
will be adaptively updated to adapt to the changed read/write
latencies. Additionally, a reduced effective wearing manage-
ment is used to improve the lifetime of the NAND-based
flash memory by scheduling write-intensive workloads to the
region with a reduced threshold voltage.

The rest of the paper is organized as follows. Section 2
describes the backgrounds of flash memory. The discussion
of several design factors is introduced in Section 3. Section 4

Figure 1: One example of voltage distribution for 3-bit mem-
ory cell.

discusses the structure and algorithm of the proposed EFM
scheme. Section 5 shows the experimental results of EFM
compared to those of previous studies. Section 6 reviews
some related work. Finally, some conclusions are presented
in Section 7.

2 Background of Flash Memory
NAND-based flash memory basically stores N-bits in a cell by
injecting electrons into the memory cell. As shown in Figure 1,
N-bit data in the NAND-based flash memory are presented by
2N voltage states. Each voltage state follows a wide Gaussian-
like distribution [8, 17] and can be approximately modeled as
shown in Eq. (1).

Pe(x) =
1

σe
√

2π
e
− (x−µe)2

2σ2e (1)

where µe and σe are the mean and standard deviations of
the erased state threshold voltage respectively. To realize a
tight voltage distribution, the Incremental Step Pulse Program
(ISPP) is used [5, 18]. Figure 1 indicates an ideal voltage
distribution. Practically, the voltage distribution is also af-
fected by other factors such as PE cycles and cell-to-cell
interference [6, 19, 20]. To write a data, the ISPP technique
is used to inject certain amount of charge into a gate. The
voltage state of a cell can be sensed to read data. As the
PE cycle of flash memory increases, any two adjacent volt-
age states will have smaller separation margins or even be
overlapped resulting in low reliability. To increase the reli-
ability and lifetime of memory cells, error correction codes
such as Bose–Chaudhuri–Hocquenghem (BCH) [21, 22] and
LDPC [23, 24] are used. Therefore, according to the factors
of ISPP, PE cycle, etc., there are trade-offs in flash memory
between read/write latencies and its lifetime. In the following
subsections, the details of these trade-offs are discussed.

2.1 Performance Trade-off in Flash Memory
To make a cell to a target voltage state, a flash memory con-
troller will program memory cells by the ISPP value (∆Vpp)
iteratively [19, 25]. The relationship between ISPP and pro-
gram latency can be found in Eq. (2) [26].

tp ∝ γ× 1
∆Vpp

(2)

where tp is the program latency, γ is a constant value, and
∆Vpp is the ISPP value. Thus, we can find that the program
latency is proportional to ∆Vpp. A larger ∆Vpp can reduce the
program latency but introduce a narrow margin between two
adjacent voltage states, thus, resulting in a higher RBER. For
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a read, it is the process to sense the voltage states of memory
cells. The latency of a read is based on the error rate of the
memory cell and the speed of ECC decoding. During a read,
an ECC scheme like BCH [27, 28] or LDPC [23, 29, 30] code
is needed to correct the sensed data. With the same correction
capacity of a ECC scheme, if a cell has a higher RBER, the
ECC scheme takes a longer time to correct the data. The
RBER is related to ∆Vpp, PE cycles, cell-to-cell interference,
etc. [6, 8, 31], and the error model [32] is shown in Eq. (3).

RBER = ∑
k
(
∫ V (k)

p

−∞

p(x)(k)dx+
∫ +∞

V (k+1)
p

p(x)(k)dx) (3)

where p(k) is the voltage density distribution of kth state [?]
with a random telegraph noise (RTN) [31, 33, 34] and cell-to-
cell interference [19]. As shown in Eq. (1), p(k) is a function
of PE cycle and ∆Vpp. Thus, as the PE cycle of flash memory
increases, the RBER will be increased and ECC decoders
need to take more iterations to read correct data out [6]. Con-
sequently, the read latency is increased. A higher ∆Vpp can
shorten the program latency but increase the RBER. There-
fore, by following the constraints of the required retention
time (one year) [35], NAND-based flash memory needs to
take more iterations to decode data and it results in a longer
read latency.

2.2 Lifetime of Flash Memory
During a program process (write), flash cells are charged
and the charges are evicted from the gates during an erase
process (i.e., the PE cycle increases by one). Consequently,
the oxide layers of flash gates will be gradually damaged by
injecting and evicting charges. With the accumulated damage
of gates, data in the cells become vulnerable and the reliability
of the cells becomes lower and lower. Finally, data cannot be
read out and the flash memory reaches its maximum number
of PE cycles and its lifetime ends. According to previous
studies [6,11,36], the maximum number of PE cycles of flash
memory is proportional to the maximum threshold voltage
(Vp). The effective wearing we [10] is shown in Eq. (4).

we =Ck×V k
p (4)

We can find that by reducing the threshold voltage Vp the
lifetime of flash memory is increased. However, if we keep

Vp
∆Vpp

as a constant value, that is, the write latency keeps the
same. Then, the margin between two adjacent voltage states
becomes narrower as shown in Figure 2. Finally, the read
latency is increased due to the increased RBERs. Thus, there
is a trade-off between read performance and the lifetime of
flash memory.

3 Design Factors
In this section, we introduce the potential performance and
lifetime improvement of flash memory by using several de-
sign factors. Moreover, a dynamic scheme is introduced with
changed latencies of flash memory due to wearing-out.

Figure 2: Reduced maximum threshold voltage.

Figure 3: Simulated latencies and RBER varying ∆Vpp at the
PE cycle of 3000.

Table 1: An example of different read and write latency pairs
∆Vpp1 ∆Vpp2 ∆Vpp3

Read (us) 150 110 70
Write (us) 450 600 800

3.1 Effect of Read and Write Latencies
One important trade-off in NAND flash memory is the la-
tencies between read and write [6, 8, 10, 31, 37]. For exam-
ple, by increasing ∆Vpp, the write latency (program latency)
is proportionally decreased while the RBERs of flash cells
are increased resulting in longer read latency as seen in Fig-
ure 3. To improve the flash memory performance by using
this trade-off, some existing studies [10, 38] categorized re-
quests into different categories to improve either read or write
performance. The basic idea of these studies is to categorize
requests into read-hot or write-hot according to their access
patterns (e.g., a pattern of a write following by another write is
regarded as write only [10]) or recency [38] (e.g., the most re-
cently updated requests are regarded as write-hot). Then, they
simply stored write-intensive requests or write-hot data to a
region with a low-write latency and migrated read-intensive
(or read-hot) data to another region with a low-read latency.
A request between hot and cold is allocated to a region with
medium access latencies if a third region exists.

However, the existing studies do not consider the precise
latency difference between read and write. By considering
different read and write latencies, the request allocation for
shortening latency may be different. For example, there is
one group of latency combinations based on different ∆Vpp
as seen in Table 1. Assume a sequence of requests for a
logical page is W,R,W,R,W...(W: write; R: read). By using
the method in [10], the access pattern is categorized as an
interleaved access. Thus, no matter what are the read and
write latencies, the scheme [10] always allocates requests in
the region with ∆Vpp2. However, if considering the ratio of
read and write latencies, based on Table 1 we can conclude
that ∆Vpp1 produces the shortest latency.
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Figure 4: Ratios of read and write in one continuous logic
space (100MB) for four sample traces.

Figure 5: Simulated latencies and RBER changes as increas-
ing PE cycles with the same ∆Vpp.

As the ratio of reads and writes in a real workload may
change over time as shown in Figure 4, the ratio between ac-
cumulated sizes of reads and writes can also be changed dra-
matically in different workloads. Even in the same workload,
the ratio goes up and down at different phases. Therefore, the
allocation of data to different regions should be dynamically
changed according to their current access patterns. Moreover,
the overall performance is also related to the current latencies
of read and write. Therefore, the relationship between read
and write latencies and data access patterns should be con-
sidered together to gain better performance while deciding
which region a data to be allocated. Section 4 describes the
proposed method to address this issue.

3.2 Effect of Flash Wear-out
As the flash memory wearing out following Eq. (2) and Eq. (3),
the read latency is increased as the PE cycle of NAND-based
flash memory increases. The program latency is proportional
to the ISPP [9,39] since the program procedure will stop when
the number of program pulses reaches its limit. To reach the
same threshold voltage level under the same program speed
(∆Vpp) and the same maximum threshold voltage (Vp), the
program latency can be the same, however, this results in a
higher RBER. Thus, the read latency is increased due to more

iterations of ECC decoder soft-decision are needed [26].
As discussed previously, the read and write latencies and

current access patterns need to be considered for a better
performance. In Figure 5, with flash memory continuously
wearing out, the read latency keeps low in the early stage, and
then it starts to increase from the middle stage of the lifetime
of flash memory. With the change of the read latency, a static
allocation scheme may not deliver good performance at all
times. Therefore, a data classification scheme needs to be ad-
justed based on the current wearing-out stage of NAND flash
memory. In Section 4 we introduce a dynamically changed
classifier to adapt to the wear-out process of flash memory.

3.3 Lifetime Improvement
The maximum number of PE cycles (flash memory lifetime)
depends on the maximum threshold voltage. As indicated in
Eq. (4), by decreasing the maximum threshold voltage, the
maximum number of PE cycles is increased. Therefore, the
lifetime of flash memory is lengthened. However, reducing
the maximum threshold voltage potentially has an effect on
access latency. As discussed in Section 2.2, if keeping Vp

∆Vpp

as a constant value, the write latency is not changed but the
narrow voltage distribution increases the possibility of over-
lapping two contiguous voltage states. As a result, the RBER
is increased and thus the read latency is increased. This clearly
indicates a trade-off between read latency and the lifetime of
flash memory.

To improve the lifetime of flash memory, the most relevant
existing study [10] simply applied a reduced threshold volt-
age to the middle region (e.g., ∆Vpp2 in Table 1). Since the
data stored in the middle region may read many times, the
increased read latency will cause a degradation of the overall
performance. In addition, there may be fewer writes to the data
allocated to this region based on the decisions of a classifier.
Thus, it may also result in less lifetime improvement of flash
memory. To minimize the degradation of read performance
and to efficiently prolong the lifetime of flash memory, we
can intentionally assign data with more writes and less reads
to the region with a reduced threshold voltage Vp. By doing
so, there are two benefits: 1) less reads accessing this reduced
Vp region can mitigate the induced read performance degra-
dation; 2) more writes in the region with a reduced threshold
voltage can achieve a longer lifetime for the same workloads.
Moreover, the classification for write-intensive workloads is
already integrated in the allocation scheme without inducing
any additional overhead. In Section 4, we combine these two
factors and efficiently improve the performance and lifetime
of NAND-based flash memory.

4 Design and Implementation
In this section, we introduce the overall design and compo-
nents of the proposed EFM scheme. The flash memory can
contain N physical regions with different read/write latencies
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Figure 6: The overall architecture of the EFM scheme.

by using different ISPP values and threshold voltages. In this
paper, we simplify the discussion by taking N=3, the same
as in the most relevant work [10]. For other N values, the
algorithm will follow a similar process. A further discussion
of different N values can be found in Section 5.5.

4.1 Overall Architecture
In this paper, the access latencies of three physical regions and
workload access patterns are used to classify data and to de-
cide which region the data are stored. Moreover, an adaptive
scheme is proposed to adapt to changed read/write latencies
due to flash memory wearing. The overall architecture of
the EFM scheme is shown in Figure 6. There are four basic
components in the EFM scheme. An I/O monitor collects I/O
information which will be used for building a classifier. The
classifier consists of two different types of classifiers. One is
called Long-Term Classifier (LT-Classifier) as a major classi-
fier to focus on the long-term data access patterns. The other
classifier called Short-Term Classifier (ST-Classifier) assists
and calibrates the LT-Classifier to obtain a more accurate
classification. A migration checker is responsible for filtering
out unnecessary migration to reduce the migration overhead.
A latency sensor is to check the flash memory wearing and
senses the changed latencies of read and write. The observed
latencies will be used to adjust the LT-Classifier to make it
wearing-out aware.

4.2 EFM Scheduling Algorithm
In this section, we introduce the proposed EFM scheme. As
discussed in Section 2 and Section 3, previous schemes do
not fully consider the differences between read and write
latencies in different physical regions and the changes of them
due to wearing. In this paper, both read and write latencies
and their request sizes are used as major factors to classify
data. According to the access latencies in each region and the
accumulated read and write sizes in the recent past, data will
be allocated/migrated to a chosen region.

In the design, we assume three different regions. Region-
1 is low-cost for writes and high-cost for reads, Region-3
is high-cost for writes and low-cost for reads, and Region-

Algorithm 1 EFM Scheduling Algorithm with N=3
1: procedure ADAPTIVE CLASSIFICATION
2: Record Tstarttime
3: N=3 /*N is the number of physical regions*/
4: while t < T do
5: Compute logical block number i of Reqk
6: if Reqk is Read then
7: Read_T BL[i] = Read_T BL[i]+Reqk.size
8: MRO[i] = MRO[i]<< 1|1
9: else

10: Write_T BL[i] =Write_T BL[i]+Reqk.size
11: MRO[i] = MRO[i]<< 1|0
12: if |LT-Classifier() - ST-Classifier()| < 2 then
13: classification = LT-Classifier()
14: else
15: classification = 2
16: if Reg_mapping[i] != 3 and classification = 3 then
17: migration[i] = migration[i] + 1
18: if currOp == 0 then /* current operation is write*/
19: Write Reqk: Region[classification]← Reqk
20: Reg_mapping[i] = classification
21: migration[i] = 0
22: else
23: Read Reqk

24: if migration[i] >= mig_threshold then
25: Migrate the block i to Region[classification]
26: Reg_mapping[i] = classification
27: migration[i] = 0
28: if t == T then
29: while for all i do
30: Read_T BL[i] = Read_T BL[i]∗0.2
31: Write_T BL[i] =Write_T BL[i]∗0.2
32: t = 0
33: end

2 is mid-cost for both reads and writes. The read and write
latencies for each region are known. First, we investigate a
simple scenario to allocate data into two regions (Region-1
(good for writes) and Region-3 (good for reads)). These two
physical regions have different read and write latencies due to
different physical configurations such as different ∆Vpp and
Vp. We assume that one (Region-1) has tp and tr for write
and read latencies, respectively. The other (Region-3) has t ′p
and t ′r for write and read latencies, respectively. A data in a
workload consisting of x reads and y writes will be allocated
into one of these two regions. If we want to achieve that the
data allocated to Region-1 has shorter latencies than that in
Region-3, it needs to satisfy Eq. (5).

Y × tp +X× tr < Y × t ′p +X× t ′r

=>


Y
X < t ′r−tr

tp−t ′p
, if tp > t ′p

Y
X > t ′r−tr

tp−t ′p
,otherwise

(5)

where X and Y are the accumulated read and write sizes of
the data in the workload for an observed duration. Therefore,
if the data access patterns follow Eq. (5), the data should be
assigned to Region-1 to obtain a lower overall execution time.
Otherwise, the data should be allocated to Region-3.

According to the above example, with the awareness of
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Algorithm 2 LT-Classifier()
Input: Write_T BL[i], Read_T BL[i]
Output: RegionN /* Region number*/

1: if Write_T BL[i]
Read_T BL[i] <

tr2−tr1
tp1−tp2

then
2: RegionN = 1
3: else if Write_T BL[i]

Read_T BL[i] <
tr3−tr2
tp2−tp3

then
4: RegionN = 2
5: else
6: RegionN = 3
7: return RegionN

Algorithm 3 ST-Classifier()
Input: MRO[i]
Output: RegionN /* Region number*/

1: if MRO[i].count(”1”)>= 5 then /*Read-intensive*/
2: RegionN = 3
3: else if MRO[i].count(”1”)<= 2 then /*Write-intensive*/
4: RegionN = 1
5: else
6: RegionN = 2
7: return RegionN

the read and write latencies and their accumulated sizes, the
LT-Classifier follows Eq. (5). The details of the EFM scheme
is shown in Algorithm 1. We use a flash memory block as a
logic block of I/O monitoring. First, the EFM scheme keeps
accumulating the access patterns of the workload and store
the read and write sizes of each logical block in Read_TBL
and Write_TBL, respectively. Meanwhile, the Most Recent
Operations (MRO) on each logical block are stored in the
MRO table. Seven bits are used to store the most recent seven
requests on each logical block. "0" indicates an operation
is write (W) and "1" is read (R) as seen at Lines 6-11 of
Algorithm 1. For example, "110" indicates the sequence of
requests is "R,R,W". The LT-Classifier in Algorithm 2 follows
Eq. (5) to determine which region a request for a logical
block is supposed to be allocated. The latencies of the three
regions associated with the accumulated read and write sizes
are used as parameters to classify access patterns. As shown
in Algorithm 3, the ST-Classifier uses the most recent seven
operations to identify the short-term access patterns of the
workload on each logical block. More than or equal to four
writes or four reads out of seven requests are regarded as
short-term write-intensive and read-intensive logical block,
respectively. Otherwise, the requests for the block will be
classified as an interleaved read and write by ST-Classifier.

The LT-Classifier as a major classifier determines the re-
gion of allocation (Lines 14-15). The ST-Classifier assists
the LT-Classifier when the results of two classifiers have the
difference of region values by 2 as seen at Lines 12-13. This
means that the classifications of long-term patterns and short-
term patterns have a big contradiction with each other and
thus the decision is made for the middle region (e.g., Region-
2). If a read request for one logical block locates at high-cost
read regions (such as Region-1 or Region-2) and the EFM

scheme classifies the logic block to the low-cost read region
(Region-3), the migration checker will check whether multiple
reads happened on this logical block based on the migration[i]
(at Lines 24-26). If so, all logical pages in this block will be
migrated to Region-3 to achieve a lower read latency in the fu-
ture. Meanwhile, the region mapping table (Reg_mapping) of
the block is also updated to indicate which region the logical
block is classified to. Otherwise, the read request is a normal
read operation and no extra action is taken. For each period T ,
Read_T BL and Write_T BL will be updated (at Lines 27-30).
The coefficient 0.2 indicates the weight of the current period
of information. By doing that, parts of workload information
at previous periods keep in the two tables and can improve
the accuracy of collecting the blocks of the workload.

Moreover, the monitoring function is responsible for peri-
odically (e.g., for each 500 PE cycles) updating the NAND
flash memory information such as the read and write latencies
of different regions. As indicated in Figure 5, at the early
stages of flash memory, the read latency grows up slowly.
Therefore, we set a large duration to update the latencies of
flash memory to LT-Classifier. As flash memory wearing out,
the increase of read latency becomes quicker. A smaller dura-
tion of updating latencies can be used to update the changed
read latencies in time. To improve the lifetime of flash mem-
ory, the reduced threshold voltage will be applied to Region-1
which has the shortest write latency. By doing so, it not only
can potentially gain the benefits of low write latency, but also
can maximize the lifetime of flash memory by reducing the
effective wearing of a large number of writes.

Figure 7 indicates an example of the EFM scheme with
three regions. According to Algorithm 1, the three regions
are split by three ISPP values (∆Vpp1, ∆Vpp2, and ∆Vpp3)
and two threshold voltages (Vp and V

′
p). The two blue lines

in Figure 7 are drawn by the LT-Classifier according to
Eq. (5). Their slopes are based on the access latencies of
different regions and request sizes. The red curves are based
on the ST-Classifier which calibrates the LT-Classifier from
Region-1 or Region-3 to Region-2 when facing a conflict deci-
sions between short-term and long-term classifiers. Moreover,
based on the wear-out aware management, the slopes of LT-
Classifiers will be adjusted based on the latencies updated by
the monitoring function. In Figure 7, one example of a logical
block is classified into Region-3 based on its accumulated
access patterns of workloads. Therefore, write requests on
this logical block will be scheduled to Region-3. For read re-
quests, if a migration of this logical block occurs as indicated
in Algorithm 1, all read requests will be read from Region-3.
Otherwise, read requests will happen on their original regions.

4.3 Discussion of Physical Region Allocation,
Garbage Collection, and Wear-leveling

Three physical regions are initially set up by different phys-
ical configurations like different ISPP values and threshold
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Figure 7: One example of the classification of the EFM
scheme with three physical regions (N=3).

voltages. We assume that the physical configurations (e.g.,
ISPP, Vp and ∆Vpp) keep consistent during the whole lifetime
of flash memory. When one physical region is full, before
releasing free space of the full physical region, an incoming
request will be re-scheduled to its neighbor physical region.
As a result, this may influence the performance of flash mem-
ory when a physical region reaches its full utilization. To
avoid it, one potential alternative is that we can estimate the
needed capacity of each physical region for applications and
set up the required capacity of each region at the beginning.
Additionally, some technologies [11, 41–43] make adaptively
adjusting capacities of each region possible. Thus, the capac-
ity of regions can be adaptively changed according to the
needs of these applications. The dynamically resizing regions
can improve the overall performance but may hurt the life-
time of the device and increase tail latency since it potentially
needs some amount of data migration. In this paper, we as-
sume each region has an adequate capacity. The problem of
capacity allocation for each physical region will be left for
future work.

Garbage collection [40,44–47] is used to release free space
by reclaiming invalid pages in flash memory due to different
granularities of write and erase operations [48]. A typical
greedy garbage collection [44] selects the blocks with the
minimum number of valid pages and the largest number of
invalid pages to reduce the migration overhead of the garbage
collection and maximize the number of additional free space.
In the EFM scheme, the greedy garbage collection is applied
by default. If there are multiple candidate blocks with the
same condition, the block with the least migration latency
(due to different latencies in the regions) will be first selected.
In doing so, the garbage collection latency can be potentially
further reduced.

Wear-leveling [49–52] targets on prolonging the lifetime of
flash memory with balancing the PE cycles across all blocks.
In previous weal-leveling algorithms [50,53], cold data (rarely
updated data) are stored in hot blocks (i.e., blocks that bear
more erases) and hot data (frequently updated data) are stored
in cold blocks (i.e., blocks with fewer erase counts). The
hot and cold blocks will be swapped based on their PE cy-
cles. Different from the traditional wear-leveling schemes, the
wear-leveling scheme in the EFM scheme will also depend

on the effectiveness of wearing. When evaluating the PE cy-
cles of flash memory, the PE cycles of the flash memory in
the region with the reduced threshold voltage will be multi-
plied by an effective wearing coefficient (0.8 by default in
this paper). Thus, based on the effective wearing PE cycles,
the cold and hot data will be swapped. Moreover, since the
physical regions store different access patterns resulting in
unbalanced PE cycles of flash blocks. Some existing stud-
ies [11, 41–43, 54] provide possibilities to adjust threshold
voltages and ISPP values in flash memory. Therefore, the
EFM scheme can achieve wear-leveling by swapping the
configurations of physical regions (e.g., swapping ∆Vpp1 and
∆Vpp3). However, the configuration swapping needs to physi-
cally swap the contents of physical regions and thus it may
involve a large amount of data migration.

4.4 Overhead Discussion
The overhead of the EFM scheme is mainly from three aspects.
One is space overhead from recording block information in-
cluding Write_T BL, Read_T BL, MRO, and migration tables.
Assume that 250GB flash memory is with 4KB page size and
each block contains 128 pages. The recording granularity of
those tables is one block. The sizes of the tables Write_T BL
and Read_T BL depend on the maximum accumulated size
for each block. If we set the maximum accumulated size for
one period 400MB. Then, the storage capacity overhead of
all those tables is about 3MB. Compared to the page-level
mapping table size (≈512MB) located in the Flash Memory
Layer (FTL), the storage capacity overhead of those tables is
really small and acceptable.

The second overhead is from classifying and updating ta-
bles as indicated in Algorithm 1. The main operations in-
volved in the classification are addition, multiplication and
division. We investigated the overhead in a system with In-
tel(R) Xeon(R) CPU E5-2620 v3 2.4GHz processors. The
result indicates that the classification for each operation only
needs about 19ns. For each period T , the time for table up-
dates needs about 85ns. Compared to the read/write latencies,
the computing overhead is much smaller. Moreover, modern
SSDs [55, 56] contain more computing resources. Therefore,
the proposed EFM only consumes a small amount of comput-
ing resource and running the proposed scheme in SSDs will
not be a practical issue.

The third overhead is from hardware implementation for
multiple threshold voltages, ISPP values, and latency monitor-
ing. This overhead has been already investigated and verified
by previous studies [8, 9, 29, 43, 54, 57–59]. So, the hardware
overhead is tolerable.

5 Experimental Results
5.1 Environmental Setup
We evaluated different algorithms based on the SSDsim sim-
ulator [60] with the extension of different read and write
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Table 2: Configurations of traces
Number of IOs (Millions) Total request size (GB)
Write Read Write Read

mds_1 0.12 1.52 1.54 87.17
web2 5.14 0.04 0.78 262.82
usr_1 3.86 41.43 56.13 2079.23
usr_2 1.99 8.58 26.47 415.28
proj_1 2.50 21.14 25.58 750.36
ts_0 1.49 0.32 11.34 4.13

hm_0 2.58 1.42 20.48 9.96
prxy_0 12.14 0.38 53.80 3.05
syn1 3.93 1.31 15.00 5.00
syn2 4.10 1.02 16.00 4.00

OLTP1 4.10 1.24 14.57 2.65
OLTP2 0.65 3.05 1.82 6.62

Table 3: Latencies of read and write with different reduced
effective wearing for different PE cycles

Region-1 Region-2 Region-3

Regular Read (us) 270 170 70
Write (us) 450 600 800

Effective wearing Read (us) 310 210 -
(reduced 0.8) Write (us) 450 600 -

latencies of 3 physical regions. The latencies are obtained
from the device model in [8, 10, 30, 32, 38]. The flash mem-
ory in the simulation has 256GB capacity with a page size
of 4KB. Each block contains 128 pages. The access laten-
cies of flash memory in different regions are indicated in
Table 3. The traces used in the experiments are the MSR
Cambridge traces [61], two synthetic traces (syn1 and syn2),
and two OLTP application traces [62] as shown in Table 2.
Three existing schemes, i.e., WARM [12], HOTIS [16], and
TOS18 [10] are used as baselines to make comparisons with
the proposed EFM scheme.

5.2 Overall Performance
First, we make a comparison between four schemes with
all 12 traces. The latencies of three regions used the regular
configuration are shown in Table 3. The overall performance
comparison is shown in Figure 8. We can find that the EFM
scheme obtains the lowest average latencies compared to the
other three baselines. On average, EFM delivers 53.9%, 87%,
and 2.96x latency reductions compared to HOTIS, WARM,
and TOS18, respectively. There are two major reasons that
the EFM scheme outperforms the others. One is that the
previous schemes misclassify the dat access patterns so that
data are allocated into the regions which have longer read or
write latencies. The other reason is that the baseline schemes
face a large overhead of migrations. For these schemes, the
performance gain of migrating data to a region with a lower
write/read latency is less than the migration overhead itself,
thus resulting in lower overall performance.

Moreover, two typical examples of breakdown analysis are
demonstrated in Figure 9. We did not present the results of
other traces since they have similar conclusions. "Optimal
R+W" indicates that read and write operations access the

Figure 8: Overall performance comparison between four
schemes.

(a) usr_1 (b) hm_0
Figure 9: Latency breakdown analysis.

regions with the lowest read or write latency. For example, a
write located in Region-1 having the lowest write latency is
denoted as "Optimal W". "Non-optimal R" and "Non-optimal
W" indicate that data are not located in their best region when
the requests arrive. "Migration" indicates the overhead of
migration contributing to the overall latency. In Figure 9, the
EFM scheme contains the largest "Optimal R+W" portion
for these two traces. For the WARM scheme, it faces a large
overhead of "Non-optimal W" and "Non-optimal R" due to its
misclassification. The HOTIS and TOS18 schemes have large
migration overheads because they pre-allocate data to the low-
read latency region but do not have many read requests arrived
in the near future. As a consequence, the large migration
overhead does not bring too much benefit of low read latency
and results in a large overall performance degradation.

5.3 Lifetime Improvement
In this subsection, we investigate the lifetime improvement of
the flash memory by reducing the threshold voltage as shown
in Figure 2. In order to reduce the write/wearing effect on the
flash memory, write-intensive workloads should be scheduled
into the region with the reduced threshold voltage. We make
a comparison with three baselines. As indicated in [10], the
TOS18 scheme stores the wearing effective write requests in
Region-2. The EFM, WARM, and HOTIS schemes use the
reduced threshold voltage for Region-1. The effective wearing
coefficient is set to 0.8. The latency configurations are shown
as the effective wearing in Table 3.

As shown in Figure 10, the EFM scheme obtains the life-
time improvement about 17.7% on average, which achieves
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Figure 10: Normalized lifetime improvement.

Figure 11: Latency comparison between EFM scheme and
EFM scheme without reduced threshold voltage.

a longer lifetime than those of the three baselines – TOS18
(7.5%), HOTIS (5.6%), and WARM (5.1%). The reason is that
the lifetime improvement management of the EFM scheme
cooperates with the classifiers and allocates write-intensive
workloads into Region-1. Therefore, the EFM scheme puts
more writes in the effective wearing region than the TOS18
scheme. Another reason is that the EFM scheme accurately
schedules write-intensive workloads to Region-1 and thus
absorbs more writes in Region-1 than WARM and HOTIS
do. As a result, the EFM scheme improves the lifetime of
flash memory more efficiently than others. The EFM scheme
shows less lifetime improvement on three exception traces –
syn1, syn2, and OLTP2. The reason is that these traces contain
interleaved writes and reads and are allocated in Region-1 to
obtain shorter overall latency. Consequently, the EFM scheme
achieves much better overall performance while obtains a
slightly lower lifetime improvement than others in these three
traces.

Moreover, another advantage of the EFM scheme is that the
read performance degradation induced by effective wearing
can be mitigated by the large number of writes with the lowest
write latency. As indicated in Figure 11, the average latency
of the EFM scheme with the reduced threshold voltage is
only increased at most 2%. In summary, the EFM scheme is
capable of improving the lifetime of the flash memory while
its performance slightly decreases. To further improve the
flash memory lifetime, we can set a smaller wearing effective
coefficient while it will further sacrifice a bit performance.

5.4 Wear-out Aware Management
As discussed in previous sections, with flash memory contin-
uously wearing out, the read performance will be degraded
due to higher RBERs and longer decoding latency. In this

Table 4: Latencies of read and write with different reduced
effective wearing for different PE cycles

PE cycle: Stage-1 Stage-2 Stage-3 Stage-4

Region-1 Read (us) 150 210 270 350
Write (us) 450

Region-2 Read (us) 110 150 170 210
Write (us) 600

Region-3 Read (us) 70 70 70 70
Write (us) 800

subsection, we investigate the performance of different strate-
gies at different PE cycles. As seen in Table 4, according to
the device model [8, 38, 63], four stages are used for demon-
strating the flash memory wearing-out process. From Stage-1
(the smallest PE cycles) to Stage-4 (the largest PE cycles),
the read latencies of two regions (Region-1 and Region-2) are
decreased and the read latency in Region-3 keeps the same
since Region-3 uses a smaller ∆Vpp which resulting in low
RBERs. The write latencies remain the same due to using the
same ∆Vpp in the ISPP process as discussed in Section 3.2.

Four baselines are used to make comparisons with the EFM
scheme. The EFM-static scheme uses the initial setup at Stage-
1 and its LT-classifier will not be updated. These four baselines
keep the same configurations of the classifiers during their
wearing-out process. The EFM scheme will adjust the LT-
classifier and the migration checker accordingly as indicated
in Algorithm 1. We select four representative traces and the
conclusions of other traces are similar to one of the four
traces. As shown in Figure 12, the average latencies of the
four baselines are increased as flash memory wears out. This
is because under the static allocation, the read latencies are
increased resulting in larger overall latencies. However, these
four schemes obtain different rates of latency increase for
different traces. For example, TOS18 only has 0.8% - 2.2%
latency increases for OLTP2 trace, but HOTIS, WARM, and
EFM-static obtain 25.1% - 81.7%, 23.3% - 70.9%, and 7.5%
- 21.7% latency increases, respectively. The reason is that the
physical regions have different performance degradation. So,
if one scheme allocates more read requests in Region-3, it
will obtain less performance degradation.

For the EFM scheme, the wear-out aware management can
help decrease the average latency when the flash memory
wears out. The reason is that during the process of updating
the LT-classifier, the EFM scheme can classify some spe-
cific access patterns more accurately than before and thus
achieves lower average latencies as shown in Figure 12a and
Figure 12b. In some cases, such as prxy_0 and OLTP2 traces,
the EFM obtains a similar performance as flash memory wear-
ing out. There are two reasons for this. One reason is if a trace
is a write-intensive workload such as prxy_0, flash memory
wearing has little influence on performance. The other reason
is that the EFM scheme already accurately allocates most of
the I/O requests. Thus, although the classifier and migration
checker are updated, most of the requests are still classified in
the same region and suffer little performance degradation. In
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(a) usr_1 (b) proj_1

(c) prxy_0 (d) OLTP2
Figure 12: Performance comparison with flash memory wear-
ing out for different schemes.

Figure 13: Performance comparison between four schemes
with one to three physical regions.

summary, using the wear-out management, the EFM scheme
can further improve the flash memory performance by 17.3%
on average.

5.5 Different Numbers of Physical Regions
In this subsection, we investigate the influence of number of
physical regions on the performance of flash memory. Under
the same maximum threshold voltage, the difference of laten-
cies between some regions becomes smaller as increasing the
number of regions. So, the results of more than three regions
might be similar to the case of three regions. Thus, we only
consider one to three regions in this subsection. As seen in
Figure 13, four representative traces are used for comparison.
All schemes will obtain the same result for one region case
(denoted by "1R"). According to the results, the traces can be
roughly categorized into three groups. One is that the EFM
scheme with three regions (denoted by "EFM-3R") has a bet-
ter performance than that with one and two regions (denoted
by "EFM-2R") like trace usr_1. For this type of traces, the
scenario with three regions provides more fine-grained man-
agement than that of one and two regions since those traces
contain many blocks with a small difference of access pat-

Figure 14: Latency comparison between EFM scheme, ST-
Classifier, and LT-Classifier.

terns. Therefore, the fine-grained management can distinguish
the small difference of access patterns and schedule them into
the low-cost region which can obtain a shorter latency. For
the second group of traces like prxy_0 and OLTP1, the EFM
schemes with two and three regions have a similar perfor-
mance since these traces have obvious classification and the
scheme with the coarse-grained physical region partition is
good enough to classify those traces. The third category is
that using less regions can obtain a better performance like
hm_0. The reason is that the migration overhead dominates
the overall performance. Using more regions potentially in-
duces higher migration overhead.

For other schemes, we obtain a similar conclusion as above.
However, those schemes deliver a massive difference for some
traces. For example, TOS18-2R and TOS18-3R have a similar
situation with the EFM scheme for the trace prxy_0. While
TOS18-3R has much worse performance than TOS18-2R for
usr_1 and hm_0. A similar situation can be found for HOTIS-
2R and HOTIS-3R for usr_1. The reason for this is that these
two schemes suffer much more migration overheads due to
their misclassification and the results in Figure 9 validate this
conclusion. In summary, the EFM scheme can obtain a better
performance than other schemes in the cases of different
numbers of regions. Moreover, to gain the best performance,
we should determine the number of physical regions in flash
memory according to their applications.

5.6 Effect of Individual Classifier
To explore the performance improvement of EFM scheme,
the performance of individual ST-Classifier and LT-Classifier
is simulated as shown in Figure 14. As seen from the results,
a single LT-Classifier can achieve similar performance with
EFM scheme in some cases such as in prxy_0 and OLTP1.
However, for the traces like usr_1, usr_2, and proj_1, a single
LT-Classifier has more than 70% performance degradation
than that of EFM scheme. The reason is that the LT-Classifier
only considers long-term access patterns. If a change of the
access pattern happens, the LT-Classifier cannot immediately
react and will mis-classify the access patterns resulting in a
longer access latency. Similarly, a single ST-Classifier obtains
22% worse performance than that of EFM scheme since the
ST-classifier fails to predict the access patterns accurately
in a long term. Therefore, with the assistance of both the
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(a) monitoring unit size (b) Period
Figure 15: Sensitivity of different design parameters.

ST-Classifier and the LT-Classifier, not only we can have
a long-term view of access patterns following Eq. (5), but
also can quickly react to the change of access patterns. In
summary, by combining both classifiers, the EFM scheme can
further improve flash memory performance more than 20%
on average when compared to the single-classifier cases.

5.7 Sensitivity of Design Parameters
In this subsection, we investigate the influence of two design
parameters, Monitoring unit size and Period T , on the per-
formance.
Monitoring unit size: the default monitoring unit size is one
block. We varied the monitoring size from 1/8 to 16 blocks.
As seen in Figure 15a, there are two types of workloads. One
(e.g., ts_0) has a similar average latency with varying mon-
itoring size. For this type of workloads, the monitoring size
has little effect on the performance because few migration
happens. The other one (e.g., mds_1 and usr_1) has a longer
average latency as the monitoring size increases. The reason
is that this type of workloads faces a large amount of migra-
tion. Thus, as the monitoring size increases, the migration
overhead will be increased as well.
Period T : the period T varies from 1 hour to 16 hours. Three
results are provided in Figure 15b. The EFM scheme with
different periods obtains similar access latencies. When the
period is 1 hour, the performance is a little worse than those
with larger periods for usr_1. The reason is that the scheme
in a short period cannot accumulate enough information to
make accurate classifications. In summary, the period has less
effect on the performance, and we can use a little long period
to obtain a little better performance.

6 Related Work
Two main research directions are investigated by previous
studies due to the trade-off between performance and lifetime.
For the first research direction on improving read or write per-
formance, several existing works [28, 30, 37, 64–66] focused
on improving read performance by optimizing ECC decoding
performance. For example, Dong et al. [28] used different
stronger-than-normal ECC and reduced soft-decision sensing
scheme to improve read performance. In [64], an error aware
LDPC decoding scheme called REAL is proposed to improve

read performance. LALDPC [30] was proposed to avoid un-
necessary read-retries by storing the high read level pages
in the cache as long as possible to improve the overall read
performance. Choi et al. [65] enhanced the performance of
flash memories by using a new code technique called Invalid
Data-Aware coding to shorten the latency of upper bits of a
cell close to lower bit read latency of the cell. To improve
write performance, some works [9,57] tuned the program step
size in ISPP to relax retention time requirement. In contrast,
Wu et al. [67] improved the read performance as satisfying
the write performance. However, all those studies only simply
improved read or write performance and did not adequately
consider the latency difference between read and write.

The other research direction focuses on the lifetime im-
provement of flash memories [11,68–70]. In [11], the authors
proposed a dynamic program and erase scaling scheme for im-
proving the lifetime of NAND flash memory by lowering the
erase voltages. Tang et al. [68] showed the Restricted Insertion
Priority Queue (RIPQ) framework to achieve a long device
lifespan by grouping similar content together and lazily updat-
ing. Li et al. [69] proposed a container-based flash cache to
store the write-intensive pages in the cache and thus extended
the lifespan of flash memories. Cheng et al. [70] explored
offline algorithms and further improved the lifetime of flash
memories by exploiting a new trade-off between the NAND
endurance and erase voltage. The WARM scheme [12] pro-
posed to improve NAND flash memory lifetime by separating
the write hot and write cold data. However, these studies
mainly targeted on lifetime extension with less consideration
of performance improvement. In this work, we mainly empha-
size on improving overall performance based on the different
latencies of read and write of three physical regions. At the
same time, the lifetime of NAND flash memories is further
optimized while maintaining similar overall performance.

7 Conclusion

In this paper, a newly proposed elastic flash management
scheme called EFM targets on improving the overall perfor-
mance and lifetime of flash memory by allocating data into
the physical regions with different write/read latencies. Two
types of classifiers are used in the EFM to achieve a more
accurate allocation for incoming requests. Moreover, as flash
memory wears out, the LT-Classifier of the EFM will be adap-
tively updated to adapt to the performance changes of read and
write. Additionally, a reduced effective wearing management
is used to improve the lifetime of flash memory by scheduling
the write-intensive workloads to the region with the reduced
threshold voltage. Finally, the experimental results indicate
that the EFM scheme can improve the overall performance
53.9% - 2.96x compared to previous works.
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