Performance Evaluation of Host Aware Shingled
Magnetic Recording (HA-SMR) Drives

Fenggang Wu, Zigi Fan, Ming-Chang Yang, Baoquan Zhang, Xiongzi Ge and David H.C. Du

Abstract—Shingled Magnetic Recording (SMR) drives can benefit large-scale storage systems by reducing the Total Cost of
Ownership (TCO) and meeting the challenge of the explosive data growth. Among all existing SMR models, Host Aware SMR
(HA-SMR) looks the most promising for its backward compatibility with legacy I/O stacks and capability of using the new SMR-specific
APIs to support the host I/O stack optimization. Building HA-SMR drive based storage systems calls for a deep understanding of the
drives performance characteristics. To accomplish this, we conduct in-depth performance evaluations on HA-SMR drives with a special
emphasis on the performance implications of the SMR-specific APls and how these drives can be deployed in large storage systems.
We explore various workload types and parameters and discover both favorable and adverse use-cases for HA-SMR drives. We also
investigate the drives performance under legacy production environments using real-world enterprise traces. To remedy the potential
severe performance degradation in certain conditions, we propose to add a novel host-controlled buffer that can help to reduce the
severity of the HA-SMR performance under unfriendly I/O access patterns. Without a detailed comprehensive design, we show the
potential of the host-controlled buffer by a use case study in this paper.

Index Terms—Host Aware SMR; Characterization; System Implication; H-Buffer.

1 INTRODUCTION

B Ig data era calls for Petabyte storage systems with
affordable Total Cost of Ownership (TCO). To meet this
challenge, hard disk drive industry pushes very hard in
developing drives with higher areal density to cut down
the dollars per gigabyte as well as the power consumption.
As perpendicular magnetic recording (PMR) [1] technology
used by the conventional HDDs is reaching its areal den-
sity limit, other new recording technologies such as Heat-
Assisted Magnetic Recording (HAMR) [2] [3], Bit-Patterned
Media (BPM) [4] and SMR (Shingled Magnetic Recording)
[5] [6] [7] are investigated to overcome this barrier. While
both HAMR and BPM are not commercialized yet due to
certain technical difficulties, SMR drives have already been
available recently to general customers [8].

Since the width of the write head is wider than that of
the read head, in SMR technology data are written partially
overlapped with the adjacent tracks in a shingled fashion
while the data can still be read from the uncovered portion
of data tracks. Consequently, updating existing data blocks
in SMR drives needs more caution as it may destroy data on
overlapping data tracks. As a solution, writing data sequen-
tially and update by Read-Modify-Write in the shingled
written space will protect the data from being destroyed.
Instead of having a huge shingled written space, it is better
to have multiple individual ones, a.k.a. bands, separated by
guard tracks to increase flexibility. Accroding to the T10
[9] and T13 [10] standards, the physical SMR bands are
abstracted as logical zones representing consecutive non-
overlapping LBA ranges. Each of the zone is designed to
be written in a log structure manner, and is associated with
a write pointer indicating the location in the zone on which
the next write should target.

There are three types of SMR drives existing, i.e. drive

Manuscript received MMM DD, YYYY; revised MMM DD, YYYY.

managed, host aware, and host managed SMR drives [11]. The
host (a server) interacts with the SMR drives in different
ways according to their types.

Drive Managed SMR (DM-SMR) drives buffer the updat-
ing I/O traffic in a media cache (or persistent cache, one portion
of the disk media) and later migrate those data blocks back
to the intended locations (LBAs in the targeted zones) by a
media cache cleaning process. This persistent cache as well as
the cleaning operations are hidden from the host, therefore,
DM-SMR drives interact with the host in the same way as
a conventional non-SMR drives [11] [12]. Host Aware SMR
(HA-SMR) drives also use the media cache buffering and
cleaning to handle the updating I/O traffic, or non-sequential
write requests in the zoned block device terminology (i.e.
write requests not beginning at the write pointer of a zone)
[9] [10]. Further, HA-SMR drives expose more internal data
layout information, such as the number of zones and the start
LBA /the write pointer/various flags of each zone, to the
host via zoned block APIs [13] [9] [10]. Host Managed SMR
(HM-SMR) drives expose the same zoned block APIs as HA-
SMR drives do, but they do not accept non-sequential writes
and hence do not need the persistent cache component [13]
[9] [10].

In this paper, we choose HA-SMR drives as our research
subject because we believe HA-SMR is expected to be more
popular than the other two models due to the following
reasons:

e Compared to HM-SMR model, HA-SMR is more
backward compatible with legacy software, so SMR
drive users can still benefit from the lower TCO
without revamping their applications or I/O stack;
and

e Compared to DM-SMR model, HA-SMR provides
the opportunity of zone-aware software optimization

for a higher and more predictable performance by
using zoned block APIs which can provide detailed
zone information to the host.

There are fewer existing studies that addresses SMR per-
formance characterization. The most closest one — Skylight
[12] — focuses on uncovering the internal structural infor-
mation of the “black box” DM-SMR model. A thorough
investigation of HA-SMR drives is still missing, especially
the performance implications of the HA-SMR model due to
its unique zoned block APIs.

We carry out an in-depth performance evaluation on
several HA-SMR sample drives with a special emphasize
on the performance characterization regarding the newly-
introduced zoned block APIs. For examples, we study the
performance impact of the zone sequential writes and non-
sequential writes regarding to the number of zones that are
in the writing working set (open zone and non-sequential
zone issues). Besides, as media cache cleaning efficiency
is the key factor to determine the non-sequential writes
performance, we investigate how different workloads could
affect the media cache cleaning efficiency. Based on the
testing results, we summarize the system implications of the
unique HA-SMR performance characteristics for building
large scale storage systems. Further, we replay real world
traces against the HA-SMR drives and explain the results us-
ing the knowledge we have obtained from the performance
evaluation.

Based on our observations of SMR drive performance
and by fully exploiting the HA-SMR model, we further
propose a host-controlled indirection buffer (called H-Buffer)
which has the potential to improve the performance of HA-
SMR drives by combining the strength of both the drive
and the host and transferring SMR-unfriendly I/O traffic
patterns into more favorable ones. Without a comprehensive
design, we have demonstrated the usage and benefit of the
H-Buffer in a simple use case study.

The rest for the paper is organized as follows. In Sec. 2
we introduce the preliminaries of the HA-SMR drives. Sec. 3
describes the measurement system and experimental setup.
Detailed tests and their corresponding results are presented
in Sec. 4. We discuss the system implications of using HA-
SMR drives in Sec. 5. Real world trace replay results are
analyzed in Sec. 6. The proposed H-Buffer is described in
Sec. 7. Sec. 8 presents a use case study of the H-Buffer. We
discuss the related work in Sec. 9 and conclude the paper in
Sec. 10.

2 PRELIMINARIES
2.1 SMR Technology

In order to break the 1Tb per square inch areal density
limit [14] of the traditional Perpendicular Magnetic Record-
ing (PMR) [1], in Shingled Magnetic Recording (SMR),
neighboring data tracks are written overlapped with each
other in a shingled fashion [5] [6] [7]. As opposed to SMR,
the traditional recording technique is therefore referred to
as Conventional Magnetic Recording (CMR) [12].

As updating data directly on a shingled data track may
destroy other data blocks on overlapped tracks, the data
blocks on these overlapped tracks need to be read out before
updating and rewritten afterwards. However, rewriting data
blocks to the overlapped tracks will potentially destroy

2

the data blocks in their overlapped tracks further. This in
turn calls for rewriting data on further overlapped tracks
and leads to a cascading write amplification. To limit such
write amplification, guard tracks are inserted after every
few tracks to stop the data track update propagation. These
guard tracks divide the whole disk space into many bands.
Each band can be individually modified without interfering
with each other. Clearly, bands with a small number of
tracks (small bands) will cause less write amplification, but
it will have less gain in areal density as well. The band size
of the current HA-SMR drives is a compromise of these two
factors.

Some of the SMR drives also reserve a small portion of
the disk space as media cache (also called persistent cache)
which buffers the non-sequential write requests from the
host. From time to time the drive will have to migrate the
buffered data blocks from the media cache to their intended
shingled bands (media cache cleaning). In order to do this,
a Shingled Translation Layer (STL) is needed to map the
Logical Block Addresses (LBAs) to the current Physical
Block Addresses (PBAs) [15] [16] [17] [18].

2.2 Zone Modeling of SMR Drives

T10 ZBC [9] and T13 ZAC [10] standards are currently
under revision aiming to define the interacting models as
well as the SCSI/ATA command extensions for the SMR
drives. The standards abstract an SMR drive as a collection
of zones which are logical non-overlapping collections of
consecutive LBAs. The notion of a zone in the standards
largely corresponds to the band concept in the SMR drive
implementation. In the rest of this paper, we will use band
and zone interchangeably.

There are two types of zones: conventional zones and write
pointer zones which are conceptually mapped to bands con-
sisting of CMR tracks and SMR tracks respectively. A write
pointer zone is designed to be written in a log structure.
It has an associated write pointer which indicates an LBA
within the zone where the next write should target. By con-
trast, conventional zones have no write pointers. Majority
of the zones in SMR drives are shingled. So, unless other
stated, we use “zones” to refer to “write pointer zones” in
the rest of the paper.

2.3 Sequential and Non-Sequential Writes

Applications can issue a write operation to a zone ei-
ther at the write pointer or not and the corresponding
write operation is defined as either sequential write or non-
sequential write correspondingly. Note that this “sequential”
is different from the traditional term of sequential I/O (as
opposed to random 1/0) that depends on the consecutive-
ness of the written LBA, the inter-arrival time, the size
of data requested, and etc. [19]. In this paper we use the
term sequential and non-sequential writes to refer to the
write requests happening at and not at the write pointer
respectively.

There are two types of write pointer zones, namely
sequential write preferred zones and sequential write required
zones. In both of them, sequential writes will go to the tar-
geted LBAs directly and the write pointer will be advanced
by the size of blocks successfully written. The write pointer
is initially placed at the beginning of the zone (zone is
empty). If there are continuous sequential writes, the write

media cache
mapping table E

media cache

zone (sequential)

1 R

write pointer
(a) Zone initially empty

media cache

mapping table ——

non-seq. write requests
L]
o

L] | .
Zz M Z R M R

write pointer (invalid)

ynedia cache

zone (non-seq.)
T
1

(c) After two non-sequential write requests

media cache
mapping table E

sequential write requests

™~

media cache

zone (sequential)

VA T R
write pointer
(b) After several sequential write requests
media cache E
mapping table

media cache

zone (sequential)

fill
data
Z Z Z Z Z T R

write pointer

(d) After media cache cleaning this zone

Fig. 1. Zone operations illustrated. (Z, M, R means reading from those LBAs will return data from Zone, Media cache or disk RAM.)

TABLE 1
Disk Models for SMR Drive

DM HA HM

Zoned Block Dev. No Yes Yes
Media Cache Needed Needed Not Needed
Conventional Zone N/A Optional Optional
Seq-write-pref Zone N/A Mandatory ~ Not supported
Seq-write-req Zone N/A Not supported Mandatory

pointer will advance accordingly until it reaches the end
of the zone (zone is full). Sequential write required zone
will reject any non-sequential writes. Conversely, sequential
write preferred zone accepts non-sequential writes by tem-
porarily buffer the data in the media cache and later migrate
them back to the intended zones.

2.4 Three SMR Drive Models

There are three models [9] [10] of SMR drives: drive
managed (DM), host aware (HA) and host managed (HM),
as summarized in Table 1.

A Host Aware SMR (HA-SMR) drive consists of sequen-
tial write preferred zones and will accept both sequential
and non-sequential writes with the help of the media cache.
A Host Managed SMR (HM-SMR) drive is made up of
sequential write required zones and will reject any non-
sequential write requests. Therefore, such drive cannot be
used directly in existing systems without modifying the ap-
plication software. Both the HA-SMR and HM-SMR drives
can optionally have a small number of conventional zones.
A Drive Managed SMR (DM-SMR) drive behaves like a
conventional non-shingled hard disk drive with no notion
of zones. It exposes a linear space of LBAs to the host
hiding all the detailed operations of the media cache and the
SMR zones from the host. It can be a “drop-in” replacement

solution without any modifications to the existing storage
systems.

We believe that HA-SMR drive is the most promising
among the three. On one hand, similar to HM-SMR drives,
HA-SMR drives expose the zoned block APIs to the ap-
plication developers so that they can design applications
that fully respect the shingled constraints. On the other
hand, like DM-SMR drives, HA-SMR drives can accept non-
sequential writes by buffering them in the media cache and
migrate them back later. Therefore, an HA-SMR drive can
also be used as a “drop-in” replacement solution. Moreover,
HA-SMR has the potential of reduce media cache operation
overhead with the help of the zone block APIs. Therefore, in
this paper we focus on HA-SMR drives. However, some of
the conclusions can be also applied or extended to DM-SMR
and HM-SMR drives.

2.5 Data Handling in HA-SMR Drives

In HA-SMR model, a zone is initially empty with the
write pointer pointing to the first LBA (Fig. 1a). Before any
non-sequential write, a zone is “sequential”. That is, all the
data that have been written, if there is any, are all issued at
the current write pointer (Fig. 1b).

A zone is changed to a “non-sequential” state after a
non-sequential write request. Such non-sequential written
data is buffered in the media cache and the write pointer is
invalidated without moving. The media cache, which is one
portion of the disk media, is formatted as a self-describing
journal for buffering non-sequentially written data. Subse-
quent writes to a non-sequential zone are regarded as non-
sequential writes and will also be redirected to the media
cache (Fig. 1c). Later, a media cache cleaning process will
migrate all the buffered data back to the targeted zones.

A media cache cleaning algorithm will read out the

oldest journaled block (i.e. in a FIFO order) from the media
cache and any other blocks in the media cache that belong
to the same zone. It will also read out the existing data in the
corresponding zone. Then all the data blocks are combined
into a consecutive extent and written back to the zone. The
zone will then be converted back into a sequential state with
its new write pointer properly set. After this, the algorithm
can proceed with the next oldest block in the media cache
journal [12].

When performing media cache cleaning, if there is any
“gap” — LBAs not written yet by the host — before the
new write pointer location, synthesized “fill data” will be
generated and written to such gap space (Fig. 1d) [20]. This
guarantees that the new write pointer will be the LBA right
after the highest LBA written by the host.

For a sequential zone (Fig. 1a, 1b, and 1d), reading data
from a location before the write pointer location will retrieve
data from the drive which may include the disk-resided “fill
data” (Fig. 1d), while reading from a location beyond the
write pointer will simply return synthesized “fill data” from
disk RAM without any accesses to the drive. For a read
request to a non-sequential zone, data can be accessed from
either the zone, media cache or disk RAM for different cases
as shown in Fig. 1c.

2.6 Zoned Block APIs and Zone Open/Close Semantics

The standards for SMR drives augment the existing
SCSI/ATA command set with more zone-specific com-
mands [9] [10]. In the host aware model, we can issue
read/write commands to the device in the same way as
we do to the conventional drives. Besides, there are a few
new commands been defined such as OPEN ZONE, CLOSE
ZONE, RESET WRITE POINTER, etc. Note that such zone
concept and the zoned block APIs do not exist in any storage
media before SMR drives.

Each zone has to be opened either explicitly or implicitly
for writing. A zone can be explicitly opened by issuing the
OPEN ZONE command or implicitly opened by writing
data to the zone. Read operations, however, do not require
opening a zone beforehand.

Zone meta-data (write pointer and various flags) that
are frequently accessed during read/write operations are
kept in the disk RAM. When a write operation issued to
the drive updates the zone meta-data in the RAM of the
drive, the on-disk copy of the zone meta-data becomes stale
and the disk is at risk of losing data. It is critical for the zone
meta-data in the drive’s RAM to be frequently synchronized
back to the platter. To reduce the overhead of such frequent
synchronization of zone meta-data, HA-SMR drives have
some limited “open zone resource” that can hold the zone
meta-data intact even through an unexpected power loss.
Such “open zone resource” is allocated for each opened zone
and will be reclaimed when the zone is closed [20].

2.7 Open Zone and Non-Sequential Zone Issues

As shown in the standards, there is a recommended
maximum number of open zones which corresponding
to the limited open zone resources described in Sec. 2.6.
From system boot-up, the first few open zone operations
only result in resource allocation without causing any disk
synchronizations. However, as the host opens more and
more zones and the open zone resource is used up, some

TABLE 2
HA-SMR Drive Specification

Attribute Value
interface ATA ZAC
model host-aware disk model

ST8000AS0022-1WL
SNO03

15628053168 / 512B
1953506646 / 4096B

Seagate model No.
prototype firmware revision
logical block: num/size
physical block: num/size

capacity 8001.563 GB
cache/buffer size 16384KB
normal media rotation rate 5980RPM
zone number/size 29809 / 256MB
conventional zones 64 (0-63)
seq-write-pref zones 29745 (64-29808)
seq-write-req zones Not Applicable

optimal open zone num 128
optimal non-sequential zone num 8

zones have to be closed to release the open zone resource.
Such zone close operations are done either explicitly by the
host issuing CLOSE ZONE commands or implicitly by the
drive selecting and closing zones on its own. Closing a zone
will write back the zone meta-data to the drive incurring
expensive disk operations. As a result, if the zone working
set for write operations consists of a large number of zones,
the write performance is expected to suffer because of the
“open zone resource” thrashing (Open Zone Issue).

Besides, the standards also indicate a recommended
maximum number for non-sequential zones. The reason
is that the drive has a limited capability to clean non-
sequentially written data from the media cache to the in-
tended zones. When the non-sequential write requests are
too many and span over a large number of zones, media
cache resources are depleted, cleaning becomes blocking
(blocking media cache cleaning), and thus hurts the per-
formance of both the writes and reads (Non-sequential Zone
Issue).

3 MEASUREMENT ENVIRONMENT
3.1 SMR Sample Drives and Testing System

We use several Seagate 8TB Host-Aware SMR sample
drives for all the tests and performance evaluations. Table 2
summarizes the basic specification of these drives. Note that
the drive has a recommended maximum number of 128
open zones and 8 non-sequential zones.

The testing system is a Dell PowerEdge R420 1U Server.
It is equipped with two Intel(R) Xeon(R) E5-2407 2.20GHz
processors and 32GB DDR3 DIMM memory. Our HA-SMR
sample drives are connected to the server via 3 Gbps
SATA motherboard connectors. The system is installed with
Ubuntu 14.04.3 LTS with Linux kernel version 4.1.6.
3.2 Library and Benchmarking Tools

libzbc [21] is a user-level library developed by HGST
to manipulate zoned block devices. The sample drives are
compatible with the r04 branch of libzbc v4.0.0. For HA-
SMR drives, except the zoned block APIs, other commands
are backward compatible with the SBC standard [22]. There-
fore, normal read and write operations can be supported by
HA-SMR drives natively without help of any libraries.

In our tests, we use libzbc to get the geometry (zone
number and size) of the drive, to monitor the write pointers
and the number of non-sequential zones, and to reset the

TABLE 3
Fundamental Parameters Testing Result (Compared with Skylight [12], our result highlight in bold)

Drive Model ~ 8TB HA (our sample) 5TB DM [12] 8TB DM [12]

Media cache type Disk Disk Disk

Media cache location ~ Single, at outer tracks Single, at outer tracks ~ Single, at outer tracks

Media cache size 25.6GB 20GB 25GB

Media cache mapping table size 185,000 200,000 250,000
Band size 256 MiB (zone size) 13-36MiB 15-40MiB

LBA-PBA mapping Static Static Static

Cleaning type Aggressive, FIFO Aggressive, FIFO Aggressive, FIFO

Cleaning time

1~30+ sec/zone

0.6~1.6 sec/band 0.6~1.6 sec/band

zone write pointers when needed. fio [23] v2.6 is used
to replay various micro-benchmark traces to the sample
drives and to measure performance in terms of latency,
throughput, IOPS, run time, etc.

4 EVALUATION RESULTS

Our evaluation has a special emphasize on the zoned
block APIs and the HA-SMR specific media cache effects on
the I/O performance. In this section, we present first the
testing results of the fundamental SMR drive parameters,
then an investigation on the performance impact of the
open zone issue and non-sequential zone issue, and finally
a study on how different workloads affect the media cache
cleaning efficiency. In these tests, the write-cache and read-
ahead of the drives are disabled to exclude the performance
interference of the disk RAM and to isolate the investigation
of the zoned specific factors.

4.1 Testing for Fundamental SMR Drive Parameters

We carried out tests similar to Skylight [12] to discover
the fundamental parameters of the internal structures of
the HA-SMR drives including media cache location and
size, mapping table size, average per zone cleaning time,
as well as the band size, mapping type, etc. The results are
summarized in Table 3.

Similarly, our sample drives also do an aggressive and
FIFO cleaning. “Aggressive” means that the drive triggers
media cache cleaning as soon as the drive becomes idle
[12]. Conversely, we have found that the band (zone) size is
much larger for our HA-SMR sample drives (256MiB which
is actually the zone size) than that of the two DM-SMR
drives described in [12] (15-40MiB). Besides, the average per
zone cleaning time for our sample drives can be much larger
and varies widely. We have an in-depth investigation which
explains the reasons of such huge variation in Sec. 4.4.

4.2 Open Zone Issue

Although the drive specifies the recommended maxi-
mum number for the open zones, system designers may
need to know exactly how the performance is degrading
when the recommendation is not followed. In order to
provide a reference point for the system designers and to
motivate the solutions, we conduct the following measure-
ments to evaluate the open zone issue for both sequential
and non-sequential workloads.

We use a light and bursty workload for this test to
exclude the media cache cleaning impact and isolate the
open zone issue for analysis. Such workload is characterized
by long idle time between bursty I/O requests and can be
typically found in personal computers and archival systems.

Sequential write (iosize=512KB) Non-seq write (iosize=512KB)

E -

00
1
I Qéé%
PPEELLPPLES PSSP PSP
Sequentlal erte (|05| ze=4KB Non-seq write (iosize=4KB)

FRREOA T [Mpreieodred

l D
10
0
SLP PO OOLPPL PP
Number of Zones

N
Q
o
N

=
Q
o
=

00

o

w
o

Thoughput (MB/s)
o

10

> ®

o 8
\7
o —T1+—

Fig. 2. Throughput v.s. number of open zones.

The test program issues 1000 write requests in a round-
robin fashion among a number of zones during each burst.
The number of the open zones ranges from 20 to 200. Both
sequential writes and non-sequential writes are evaluated.
Besides, we test with large (512K B) and small (4K B) I/O
request sizes. The results are summarized as boxplot in
Fig. 2. The x-axis of Fig. 2 represents the number of open
zones and y-axis represents the throughput. The highest
and lowest lines in throughput show the maximum and
minimum throughputs respectively of each case based on
the number of open zones. The middle rectangular box
represents the throughput between the first and the third
quartiles. The horizontal line in the middle of each box
represents the median throughput. Based on the results, we
observe that for sequential writes, the performance drops
clearly from 120 zones to 140 zones, which is consistent
with the self-reported 128 recommended maximum open
zone number. Specifically, the median throughput decreases
by 57% when the number of open zones increases from 120
to 140 in the 4K B case. We will explore a possible solution
for such a performance degradation in Sec. 8.

Surprisingly, the performance of non-sequential writes
shows no significant throughput degradation as the open
zone number increases. This is probably because non-
sequential writes are redirected to media cache and the self-
describing journal structure (see Sec. 2.4) guarantees data
reliability without using too many “open zone resources”.

4.3 Non-Sequential Zone Issue

The recommended maximum non-sequential zone num-
ber indicates a suggested number of zones that can be non-
sequentially written in order to limit the media cache clean-
ing overhead. Nevertheless, legacy zone-unaware work-

loads could inevitably scatter non-sequential write requests
to more zones than the recommended number (8 for our
sample drives). Therefore, we still want to study the perfor-
mance characteristics of the legacy workloads.

In the previous test, we find that a light and bursty non-
sequential workload experiences no noticeable performance
degradation when the open zone number goes beyond
the recommend maximum. This is because the idle time
is long enough for the idle cleaning to finish before next
burst of I/O requests arrives. Therefore, a light and bursty
workload cannot show the media cache cleaning impact on
I/0 performance.

In this test we design a long-run write intensive work-
load that covers different number of zones. Such workload is
able to deplete the media cache resource and forces the drive
to do the blocking cleaning while serving write requests.
Specifically, a 256KB-sized non-sequential write workload is
performed for 2 hours into 128 and 256 zones respectively.
The throughput and the number of non-sequential zones are
summarized in Fig. 3.

In both 128 and 256 zone cases of Fig. 3, the non-
sequential zone number decreases periodically indicating
that the drive starts the blocking cleaning while serving
the write requests. Based on the throughput and the non-
sequential zone number plots, it can be seen that each time
the drive starts to clean the media cache, the throughput
drops from over 100MB/s to a very low rate around
0.1MB/s (0.1% of the normal throughput). During the first
cleaning cycle, the throughput stays at the low rate for over
25 minutes in the 128-zone case and over 37 minutes in the
256-zone case. This is certainly a very severe degradation of
performance that to be concerned by system designers.

We speculate that the low throughput interval will be
prolonged when the number of the non-sequential zones
increases. As the number of non-sequential zones increases,
less space is reclaimed in media cache when the drive
cleans one targeted zone (migrating media cache buffered
data back to this targeted zone by reading, combining,
and rewriting this zone). Therefore, more zones have to be
cleaned to reclaim the same media cache space enough for
the drive to perform I/O in a normal rate. To verify our
speculation, we create an extreme workload in which the
non-sequential writes span the whole drive (29808 zones).
Consequently, the first blocking cleaning takes so long that
the testing program breaks down after about 100 minutes
of low-rate interval. A possible explanation is that the
cleaning speed is extremely slow and the drive throttles the
incoming writes hard for a long duration that causes some
timeout faults in the Linux stack. However, such an extreme
workload is not expected in a real world environment.

4.4 Media Cleaning Efficiency

From the test in Sec. 4.1, we notice that the average
per zone cleaning time varies in a wide range (1~30+s).
The average per zone cleaning time is closely related to
the media cache cleaning impact on the I/O performance
because the faster the drive finishes cleaning, the sooner the
drives throughput recovers to the normal level. Here we
use the average per zone idle cleaning time as a metrics
for the media cache cleaning efficiency, i.e., the higher is
the average per zone cleaning time, the lower the cleaning
efficiency is.

7150 i — 150 T —
= \ 128 zones 256 zones
2120 & ; “ 1120 1
5 % ¥ 3 QL 90 R p 1
ED 2] Ok * % |
EwE AT el PE R L e
(- 0 & Ig‘ oL - Yy o T O b m
" 300 & 20, 40 60 1&?2% 100 120,070 20 40 60 226 100 120
Soa0 | , Z0nes | 0 : “ ﬁones]
%180 S 1180 f AL e
9120 | i A] 120t R g
0 TR I I I O I i I I I
0 20 40 60 80 100 120 0 20 40 60 80 100 120
Time (min)

Fig. 3. Throughput and number of non-sequential zones vs time when
writing to 128 or 256 zones. Vertical dash lines show the correlation
between the throughput and the cleaning process.

We hypothesize that the zone cleaning time depends on
the workload characteristics including the updated ratio, the
I/O request location, 1/O request size, I/O request number, zone
data distribution in media cache, etc. Here the updated ratio
(U) of a zone is defined as the proportion of data that is non-
sequentially written within a zone. The I/O request location
is defined as the location where the update happens within
a zone.

4.4.1 Update ratio and the I/O request location

We design the first test to study the impact of the update
ratio and the I/O request location on the average per zone
cleaning time. The test program updates 1000 zones in a
round robin fashion with different update ratios (U=20%,
40%, 60%, 80%, and 100%). Note that such update traffic is
a non-sequential write workload. Four different I/O request
locations are used: the beginning of the zone (start), the
middle of the zone (middle), the end of the zone (end) and
random offsets within the zone (rand). The initial state of a
zone can be either empty or full. After the replay finishes,
we record the idle clean time and divided it by the number
of zones (1000) to estimate the average per zone cleaning
time (Fig. 4).

From the figure, we can have the following observations:
As U increases, the cleaning time goes up accordingly
since more data blocks need to be migrated from media
cache. If we start from an empty zone, when U increases
to 100%, there is actually no difference whichever LBA
location we pick within the zone (i.e. start, middle, end or
random). From the bar plot we see the four cases converge
at U = 100%. The same happens if we start from a full zone.

When writing to an empty zone, the closer the I/O
request location is to the zone end, the longer it takes to
clean that zone. Note that a random selected LBA also
results in the same highest cleaning time. The reason is that
when migrating data from media cache back to intended
zones, the drive has to write some synthesized fill data to the
unwritten areas before the write pointer (Sec. 2.5). Therefore,
updating to higher LBA positions in an empty zone results
in more extra data to be read/written in the later cleaning
process.

By contrast, when writing to a full zone, the closer the
I/0 request location is to the zone beginning, the longer
the cleaning time is. Similarly, a random selected LBA also

@lo @ T T T T

© empty start 1 @ 25 | constant ionum §°

E g | emptymid £ constant iosize — o

=3 empty end —— 20 1

£ g | emptyrand =

5 full start m— §15 | £ .

8, fulmid 3 S 8

o full end —m - 10 P = e B
[o0)

é 5 full ranc m— é 5 | iosize=: fc’fn 3 i

5 |_| o ionum=ny &

< 0 < 0

20 40 60

Proportion of the non-seq data written to each zone (update ratio) U (%)

Fig. 4. Impacts of update ratio and the 1/0 request location on the average per zone

cleaning time.

results in the same highest cleaning time. This is because mi-
grating data into a full zone incurs reading and rewriting to
that zone and modifying lower LBA will result in more data
to be read out and written back. Such phenomenon implies
the drive may adopt some read-modify-write technique that
can apply the update by reading and rewriting only parts of
the zone data (such as partial read-modify-write [24]).

When U = 100%, the full zone cases take more time
than the empty zone cases. In fact, identical amount of data
is migrated in both cases. It is possibly due to zone meta-
data loading overhead. This may due to some unnecessary
reads or some other reasons that are unclear to us.

4.4.2 /O request size and I/O request number

From the previous test, we know that the average per
zone cleaning time goes up when more data are written to
the zone. However, it is unclear whether the cleaning time
will be the same if the equivalent amount of non-sequential
data are written with different numbers of 1/O requests or
different I/O sizes. So we design the next test to investigate
the impact of I/O request size and I/O request number.

Instead of increasing U by raising I/O request number
n, the testing program keeps n constant but increases s to
raise U (left bars in Fig. 5). For the baseline, we still carry
out another set of tests by keeping s the same but increases
n. The results are shown in the right bars in Fig. 5. Note
that we start from U = 20%, so = 32K B, and ng = 800 in
both cases. The zones are initially empty so that the cleaning
overhead is close to the effective data movement cost. It can
be seen from the figure, in both cases, the cleaning time
increases as U grows. But if we increase I/O request size, the
cleaning time grows in a slower pace than the cases where
we raise the I/O request number. Therefore, we guess that
the number of I/O requests to be cleaned contributes more
than the size of the I/O requests does to the cleaning time.
We verify this hypothesis using the following test.

In this test, we keep the total amount of data as a
constant, but vary the I/O request sizes. In other words,
if we cut the I/O request size into half, the total number of
I/0 requests will be doubled. The test program starts from
empty zones and update the first 20% of the zones. The I/O
request size ranges from 4K B to 256 K B. In Fig. 6, we can
see that although the same amount of data is going to be
migrated, the cleaning time varies a lot. Also we observe
that the cleaning time is nearly inverse proportional to the
I/0 request size when compared to the theoretical inverse
proportional plot in the figure. We conclude that the zone
cleaning time is affected more by the 1/O request number

80 100

10

20 40
Update Ratio U (%)

Fig. 5. Compare iosize and ionum.

than the I/O request size. This probably is because the
time for random seeks when migrating data blocks and/or
the mapping manipulation (read/update) cost of the non-
sequentially written data dominates the total cleaning time.

T 50 ‘ ‘ ‘ ‘

% Band cleaning timefor 20% U
£ 40 Theoretical inverse proportional plot —t— 1
.C'g) 30 1
> 20| 1
£

§ 10 1
S o0 ==

% 4KiB 16KiB 64KiB 256KiB
@ /O size

Fig. 6. Average per zone cleaning time of different write request sizes

4.4.3 Zone data distribution within the media cache

The ordering of the non-sequential write requests deter-
mines the layout of the data blocks belonging to the same
zone in the media cache (FIFO journaling, Sec. 2.5). In this
test we investigate the impact of data layout in the media
cache on the average per zone cleaning time with other
factors discussed above fixed.

The program issues non-sequential 4KB writes to the
starting 1% of 1024 zones with two different media cache
data layout:

o Clustered: the test program non-sequentially writes
the starting 1% of the first zone, then the starting
1% of the second zone, and all the way to the last
zone. The data blocks from the same zone is clustered
together in the media cache.

o Interleaved: the test program issues a 4KB non-
sequential write to the first zone, then issues another
4KB write to the second zone, and all the way to the
last zone. Then it starts over again from the first zone
in a round-robin fashion until each of the zones has
the first 1% updated. Here the data blocks from the
same zone are interleaved in the media cache.

We measure the average per zone cleaning time after the
writes and surprisingly find that the interleaved writes have
a lower average per zone cleaning overhead than that of the
clustered writes. From the test we verify that the drive does
FIFO journaling and aggressive media cache cleaning (as
discovered in Sec. 4.1). When taking a close look, we find
that the idle cleaning in the clustered case starts from a non-
sequential zone number of 563, not the expected 1024, which

indicates that the drive starts the cleaning even earlier than
the test finishes. So, we hypothesize that for the interleaved
writes the drive performs a similar earlier cleaning and this
may be the reason of a lower average per zone idle cleaning
time.

In order to verify this hypothesis, we perform the write
workload again, and immediately read all the data blocks
in the write ordering after the completion of the writes. We
trace the latency, the throughput, and the number of non-
sequential zones through the test (Fig. 7).

The non-sequential zone number plot in the last row
of Fig. 7 proves this hypothesis of early media cache
cleaning. In the clustered case, the non-sequential zone
number keeps increasing until around 600 seconds when
the internal cleaning kicks in. The cleaning process forces
the non-sequential zone number to stop increasing and to
keep roughly constant until the writes stop. One thing to
notice is that media cache cleaning brings down the average
throughput. By contrast, in the interleaved case the number
of non-sequential zones grows quickly to 1024 because of
the round-robin non-sequential writes, then drops twice.
This implies the SMR drive cleans the media cache two
times before finishing all writes. Accordingly, each time the
drive cleans the media cache, the throughput drops and the
latency skyrockets.

From the latency and throughput plots of the two cases,
we can see clearly the boundary between the write (fea-
turing higher latency, lower throughput, and long dura-
tion) and read operations (featuring the opposite). In the
clustered case, if we zoom in the read latency plot, there
is a noticeable phase change during the read task indicat-
ing the first portion of the media cache has already been
cleaned out, because the read /write head movement pattern
is different from that when accessing the data blocks still
residing in media cache. Similarly, there is also a distinct
phase change during the read task for the interleaved case.
Such phase changes during read requests also confirm our
hypothesis that the media cache cleaning has already started
before the writes complete for the interleaved case. This
actually explains why the interleaved workload needs less
cleaning time at the end, because earlier cleaning has al-
ready moved some data blocks back to the targeted zones
so that less data needs to be migrated for one targeted zone
during the idle time. By contrast, the clustered case needs
to clean fewer number of zones, but each of the remaining
zones has all the new data residing in the media cache.
Lastly, we can see that cleaning process starts after a dif-
ferent amount of total data written with different numbers
of non-sequential zones. The cleaning durations are also
different for different situations. It is unclear when the drive
triggers and stops the media cache cleaning.

5 SYSTEMS IMPLICATIONS

Here we summarize the systems implications of the
performance characteristics of HA-SMR drives to provide
a reference point for the HA-SMR systems designers.
Sequential Writes v.s. Non-sequential Writes

The long-held understanding that sequential writes have
better performance than non-sequential writes does not ap-
ply to HA-SMR drives although the definitions of sequential
writes and non-sequential writes are somewhat different

8

from the traditional ones. In some cases, we observe that
non-sequential writes could perform better than sequential
writes (Fig. 2). Here are several reasons for that:

o Non-sequential writes will be redirected to the media
cache which is located in the higher performance
outer tracks (Table 3);

e Media cache buffering converts random writes into
physically sequential writes;

e Sequential writes could be severely affected by the
open zone issue; and

o Light and bursty workloads do not suffer from the
performance degradation caused by media cache
cleaning as write intensive workloads experiences.

Open Zone Number

Due to the internal limitation of the open zone resource
in the HA-SMR drive, a limited number of zones can be
open for writing. Frequent switching among sequential
written zones means frequent disk synchronizations for the
open zone meta-data, and it will then make the write per-
formance drop sharply, even if the application is performing
sequential writes. Therefore, system designers should also
avoid making the working set for sequential writes beyond
the recommended maximum number of open zones.
Non-sequential Zone Number

The penalty of cleaning non-sequential writes is more
severe when more zones are non-sequentially written, in
which case the low throughput interval is prolonged. Dur-
ing the cleaning time, the throughput drops three orders
of magnitude compared with normal performance. Disk
vendors may give a recommended maximum number of
non-sequential written zones. However, this number is only
a rough estimate considering the overall capability of the
drive including the size of the media cache, the media cache
map size, the disk’s internal processing power, the available
disk RAM supporting the cleaning, etc. If non-sequential
writes are inevitable, the application developers for HA-
SMR drives should keep the number of non-sequential
zones as few as possible to avoid this severe performance
degradation. From another perspective, the HA-SMR drives
will fit well in a hierarchical storage architecture as the
second tier storage where the first tier — possibly flash —
can filter out most of the requests of non-sequential writes.
It may also work well as the primary tier if an appli-
cation/software layer can avoid or reduce non-sequential
writes.

Average per Zone Cleaning Time

A good estimation of the zone cleaning time is important
for the systems designers to speculate whether and how
much internal media cache cleaning will impact the on-
going workloads. Generally, the cleaning time is positively
correlated with the total amount of data to be rewritten
and the number of buffered write requests to be migrated.
Between the two, the number of requests contributes more
to the cleaning time. This will give us a hint that larger
non-sequential 1/O size is favorable in a sense that the
cleaning time will be shorter because it results in fewer
non-sequential write requests logged in the media cache.
Moreover, the drive may trigger cleaning earlier while the
drive is still busy.

cluster interleave
1200 0 1200 0
@ 900 10 900 | 10
é 0 0 : L ESY
%‘ 600 1360 1400 1440 1480 600 - 1360 1400 1440 1480
8 a0} 300 |
0 i i i i . A L 0 L L L
Q) 0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
ae] 1.6 1.6
= 12 12
_S . r) . r
g o8¢t Nl 08
[=2]
3 04¢p ~ 041 - ——
E 0 L . R i | ! | 0 L R — | - | |
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
8 1200
c
(=]
% 800
P 400 =l
5 o
= 0 T | | | | | | | | | | |
*
0 200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
Time (s) Time (s)
Fig. 7. Zone cleaning time for data in different zone data layout in media cache.
TABLE 4
Zone Specific Analysis for MSR Traces (sorted by the write request #)
total write total write footprint Write total write total write footprint Write
trace req # req # size (GB) (#zones)* Ratio (%) trace req # req # size (GB) (#zones)* Ratio (%)
wdev_3 682 671 0.003 5 98.39 usr_0 2,237,889 1,333,406 13.077 34 59.58
wdev_1 1,055 1,055 0.005 4 100.00 src2_0 1,557,814 1,381,085 9.340 38 88.66
rsrch_1 13,780 13,738 0.159 84 99.70 | web_0 2,029,945 1,423,458 11.673 35 70.12
src2_1 657,774 14,104 0.180 125 214 | srcl.2 1,907,773 1,423,694 44.147 16 74.63
web_3 31,380 21,330 0.424 14 67.97 ts_0 1,801,734 1,485,042 11.340 47 82.42
hm_1 609,311 28,415 0.541 11 4.66 stg_0 2,030,915 1,722,478 15.090 30 84.81
web_2 5,175,368 38,963 0.784 40 0.75 usr_2 10,570,046 1,994,612 26.469 926 18.87
rsrch_2 207,587 71,223 0.289 72 34.31 srcl_1 45,746,222 2,170,271 30.349 381 4.74
web_1 160,891 73,833 0.649 40 45.89 proj_1 23,639,742 2,496,935 25.576 1,475 10.56
proj_4 6,465,639 95,865 1.010 294 1.48 hm_0 3,993,316 2,575,568 20.477 45 64.50
proj_3 2,244,644 116,341 2.627 254 5.18 prn_1 11,233,411 2,769,610 30.785 1,222 24.66
mds_1 1,637,711 116,676 1.540 188 712 | proj_2 29,266,482 3,624,878 168.686 1,474 12.39
wdev_2 181,266 181,077 1.407 32 99.90 | proj_0 4,224,524 3,697,143 144.267 34 87.52
stg 1 2,196,861 796,452 5.986 224 36.25 usr_1 45,283,980 3,857,714 56.127 1,886 8.52
src2_ 2 1,156,885 805,955 39.282 275 69.67 prn_0 5,585,886 4,983,406 45.965 85 89.21
wdev_0 1,143,261 913,732 7.146 27 79.92 | prxy_0 12,518,968 12,135,444 53.797 58 96.94
mds_0 1,211,034 1,067,061 7.365 19 88.11 srcl_0 37,415,613 16,302,998 809.159 478 43.57
rsrch 0 1,433,655 1,300,030 10.818 59 90.68 | prxy_1 168,638,964 58,224,504 724.816 169 34.53

" Here footprint is defined as the number of zones that are written by the traces.

REPLAY OF MICROSOFT RESEARCH CAM-

BRIDGE TRACES

Previous tests mainly focus on investigating the drive’s
zone-specific performance using synthesized traces. We are
also interested in the I/O performance of HA-SMR drives
under typical real-life workloads. Besides, we can apply the
knowledge obtained from the previous performance tests
(Sec. 5) to help predicting and analyzing the real-world trace
replay results.

We replay the 36 one-week-long Microsoft Research
Cambridge (MSR) traces [25] which are collected from en-
terprise data center workloads. Traces are replayed against
both the HA-SMR drives and baseline HDDs. The HDD
model is Seagate ST6000NMO0034 (6TB SAS HDD, 7.2K
RPM). We replay the MSR trace using fio with the sync
engine. Write cache and read-ahead are turned on for
both HDD and SMR drives to mimic realistic production
environment. This is different from the previous settings

of tests. Moreover, as reading from a location beyond the
write pointer will return synthesized fill data from the SMR
drive’s RAM and result in unrealistic high throughput (Sec.
2.5), we “warm up” the SMR drive before replaying by
making the zones full such that the read operations will get
fill data from the disk. Our current tests simply “blast” all
the I/O requests to the drive without referring to the time
stamps of 1/O operations.

6.1 Zone-Specific Analysis for MSR Traces

Before the trace replay, the following key statistics are
analyzed for these traces: total number of operations, num-
ber of write operations, total write size, zone footprint of the
writes, ratio of write operations (Table 4).

Those statistics are selected because the following rea-
sons. The number of write operations and the total write
amount have direct impact on the blocking media cache
cleaning (Sec. 2.7). As the write operations of legacy
zone-unaware workloads are almost non-sequential (mostly

10

proj_4 srcl 2 stg 1 prn_1
4 - 4 - 4 - 4 -
. write write write write
Z 37 read 31 read 31 read 31 read
& | i | i
o 2 2 ' - 2 2
§ 1+ T e 1 e oo [A I I 1 b e - et Ca v e o% e we e e
0 il e " PRI T L L 0 aamahics Sty LN LT '\:-- T j.'.'. 0 e .' 3 4 e TR Y .-a L 0 . X ie e S
0 102030405060 708090 O 20 40 60 80 100 120140 0 20 40 60 80 100 0 20 40 60 80 100120140
400 - 400 - 400 - 400
write e write e write e
300 300 300 reed e 300

200 |
100
0

‘*, e i
0 10 20 30 40 50 60 70 80 90

0 20 40 60 80 100120140

200 [
100

200
100

o Li
0 20 40 60 80 100

#non-seqzones Throughput (MB/s)

300 20 250
“ e . 200 fus AP R

| N | B e |5 R N
I X 10 | PR
‘] 100 F ¥

100 | 5}

oL #nonseqzones — | o #non-seqzones | S0 [#non-seq zones A 20 [#non-seqzones -
0 102030405060 708090 O 20 40 60 80 100 120140 0 20 40 60 80 100 0 500 1000 1500 2000 2500
Time (min) Time (min) Time (min) Time (min)

Fig. 8. Replay results of selected traces.

never happening at the write pointers), the number of write
operations can be regarded as the media cache mapping en-
tries required by the trace. Similarly, the total write amount
is a good estimate for the media cache capacity requested by
the trace. If the requested resources exceed the drive’s media
cache capacity (Table 3), cleaning will become blocking
which affecting both read and write performance (Sec. 2.7).
The total number of operations and the write operation ratio
reflect how intensive data is injecting write requests into the
SMR drive. Zone footprint for write operations will affect
the media cache cleaning efficiency. The more zones the non-
sequential writes span, the less efficient the cleaning process
is (Sec. 4.4).

From the statistics, we find that it is the media cache
mapping size, rather than the media cache size that becomes
the bottleneck and causes blocking media cache cleaning.
While the replay results of all traces are conducted, four rep-
resentative ones are especially studied who represent differ-
ent media cleaning severity, i.e., proj_4, stg_1, srcl_2,
and prn_1 (high-lighted in bold in Table 4).

6.2 Representative Traces Analysis

Trace proj_4 has a small number of write operations
and the total write amount is small too, so we hypothe-
size that it will not trigger blocking media cache cleaning
even the write operations span as many as 294 zones. By
contrast, the other three selected traces are expected to
trigger blocking media cache cleaning as they have more
non-sequential writes than the media cache mapping table
size. According to Sec. 5, we hypothesize that media cache
cleaning caused performance degradation will be positively
related to the zone footprint. So we expect the severity of
media cache cleaning impact to be proj_4 < srcl_2 <
stg_1 <prn_1.

Fig. 8 shows the latency, bandwidth and the non-
sequential zone plots of the selected traces. It can be
observed from the non-sequential zone number plot that
proj_4 never triggers media cache cleaning, while the

others do. Note that even having a total write amount as
small as 5.99GB, stg_1 still triggers cleaning.

We can see from the performance plots of stg_1 that
each time the drive starts media cache cleaning, the through-
put decreases and the latency goes high. During the almost
read-only intervals, the non-sequential zone number keeps
constant. This is because there are fewer write operations
injecting into the media cache and the drive is still busy
such that the idle cleaning never gets a chance to happen.

Comparing stg_1 and srcl_2, we find that srcl_2
spans much less number of zones (16) than that of stg_1
(224). Therefore, it will have less performance degradation
even it imposes more demand for the media cache capacity
and mapping table. prn_1 has the most zone footprint
(1222), implying a serious media cache cleaning impact.

The average write latencies of proj_4, stg_1, srcl_2,
and prn_1 are 712.55us, 4335.34us, 5708.74us, and
28426.51s respectively indicating an increasing degree of
performance degradation.

One thing to notice is that the read latency is not
affected as much as the write latency. For example, the
average read latencies for proj_4, stg_1, srcl_2, and
prn_1 are 592.11us, 4767.97us, 962.704us, and 6779.09us
respectively. The read latency of stg_1 is much less than
that of src1_2. One possible reason is that the read-ahead
mechanism of the disk will reduce the latency of subse-
quent read requests if the read requests are located close
to each other. In stg_1, 93.5% of the read requests have a
sub-millisecond latency because of this read ahead benefit.
Although media cache cleaning does not directly affect the
read performance, it may indirectly reduce the read ahead
benefit by “relocating” the modified data blocks to media
cache and breaking the physical consecutiveness of data
accesses.

6.3 Latency Analysis

We summarize the average latency of all the traces in

Table. 5. We also collect the 1st, 10th, 50th(median), 90th,

11

TABLE 5
MSR Traces Average Latency (sorted by the write request #, see Table 4)

HDD Avg SMR Avg HDD Avg SMR Avg HDD Avg SMR Avg HDD Avg SMR Avg
Trace Lat.(us) Lat. (us) Trace Lat.(us) Lat. (us) Trace Lat.(us) Lat. (us) Trace Lat.(us) Lat. (us)
wdev_3 240.92 221.93 proj_d 451.27 593.90 usr_0 1267.99 2300.85 hm_0 2376.67 3213.04
wdev_1 159.72 220.67 proj_3 384.55 853.91 src2_0 612.04 1461.26 prn_1 2206.03 12116.30
rsrch_1 2207.60 8579.06 mds_1 781.69 1547.47 | web_0 2071.97 2489.80 | proj_2 1191.22 2248.36
src2_1 743.30 977.02 | wdev_2 490.66 718.95 | srcl_2 978.80 444512 | proj_0 876.53 1480.60
web_3 2400.37 1555.28 stg 1 848.13 2683.33 ts_0 536.96 1068.41 usr_1 1415.70 4703.44
hm_1 436.98 785.13 src2_2 2836.14 3662.42 stg 0 843.51 2588.73 prn_0 2013.20 4347.09
web_2 344.52 406.65 | wdev_0 442.32 920.41 usr_2 1781.26 4209.63 | prxy_0 1025.67 592.48
rsrch_2 1321.52 951.67 mds_0 629.77 827.67 srcl_1 729.98 1376.58 srcl_0 1490.85 3007.77
web_1 1478.16 1050.01 | rsrch_0 423.46 2501.85 | proj_1 1471.86 4220.74 | prxy_1 2943.32 3259.39
T T T T T T T T T T T T T T T
10° | 1 10°% | . 10° | 1
7 10° | 1 m10°¢ i ®10°F 1
=3 3 3
= poo =2 =
oy Poo __—+ oy x oy ’
g 10* . 1 g1t} {1 g1ott . 1
® / ® ® s
2 103 = 2 103 2 103 "/
)] 3 1 — [a) F B) L p]
a 10 “‘ ¥ a 10 a 10 /.
T P10,/ proj_ 4 —— T proj_ 4 —— T 4 proj_ 4 ——
102 | L4 scl2 o 10% | scl 2 —— - 10° /1 scl 2 —— -
stg 1 stg 1 . stg 1
101 ‘ 1 1 prn_ll 101 - 1 1 prn_ll 101 - 1 1 1 prn_ll 1
10t 102 10° 10* 10° 10° 10t 102 10® 10* 10° 10° 10t 102 10° 10* 10° 10°
SMR Latency (1s) SMR Latency (us) SMR Latency (1s)

(a) Write requests

(b) Read requests

(c) Write and read requests

Fig. 9. Sampled Q-Q plot between HDD and SMR drive percentile latency numbers for selected MSR traces. (Note that the plots are in double log

scale).

and 99th percentile latency numbers, and plot the percentile
latency of HDD drives against those of the SMR drives, i.e.
a sampled Q-Q plot. In Fig. 9, we show the Q-Q plot of the
same set of representative traces as Sec. 6.2. The most bottom
left dot represents the 1st percentile (P01), the second means
the 10th latency (P10), so on and so forth. The last point
(most top right) represents the 99th percentile latency (P99).
The dashed line across the figure shows the boundary where
the SMR drive latency is equal to the HDD latency such that
any dots to the top left of the dashed line means the SMR
drive has a smaller percentile latency, and vice versa.

The Q-Q plot of write requests (Fig. 9a) has greater
deviation from the diagonal dashed line than that of the read
requests (Fig. 9b). The Q-Q plot for both the I/O requests
(Fig. 9c) is a weighted combination of that of the write and
read requests.

For write operations (Fig. 9a), traces have comparable 1st
and 10th percentile latencies between HDD and SMR drives,
and SMR drives have a better 50th and 90th percentile
latencies. This is due to the media cache buffering effect
which converts non-sequential writes into physically se-
quential ones such that most the SMR write operations have
a reduced write latency. However, for some 99th percentile
write latencies of SMR drives, they go up by over 2 order
of magnitudes from the 90th and this phenomenon does not
exists in HDD. It means 1 out of every 100 write operations
may experience a latency in seconds. This is the price to
pay when cleaning the media cache. This implies legacy
application will experience more serious performance jit-

ters in write operations. Nevertheless, the 99th SMR write
percentile latencies of other traces stay above the dashed
line indicating a consistent advantage of HA-SMR drives
over HDDs. Such traces never trigger blocking cleaning
(e.g. proj_4) or only have a moderate blocking cleaning
happening (e.g. stg_1) as its non-sequential writes span
over a smaller number of zones.

For read operations, SMR drives has similar 10th, 50th
and 90th latency distribution to that of HDD as the shingled
constraint has less impact on read operations. Some traces,
e.g. prn_0, prn_1 (show in Fig. 9b), proj_0, proj_1,
usr_0, usr_1, usr_2, experience a longer 99th read la-
tency. We believe the reason could also possibly be the
media cache cleaning as they coincide with the long 99th
percentile write latency of the same traces. It may also
because the non-sequential write requests reduce the read-
ahead benefits.

6.4 Discussion

Note that the baseline HDD has a slightly higher RPM
than that of SMR drives so the comparisons will have some
bias in favor of HDD. Moreover, in a realistic setting, the
I/O commands will come to the drive intermittently such
that there may be idle time for the drive to clean the media
cache without affecting the performance.

7 H-BUFFER

The special performance characteristics especially the
performance degradation observed in Sec.4.2 and Sec. 4.3
raise quite a challenge for software developers using the
HA-SMR drives in a large storage system. To confront

control path — — —> Incoming Data
data path ——»
®_® O)
HOST — — — — — — — —1
DRIVE — — — — —

A4 \
| [logf(i]| [ieel§ || 4 Y|

Media Cache H-Buffe riginal zone

Fig. 10. H-Buffer and the three data paths for HA-SMR drive.

this challenge, by exploiting the unique HA-SMR hardware
features and host interacting model, we propose a Host-
controlled indirection Buffer (H-Buffer). H-Buffer embodies an
HA-SMR three-data-path system (the mechanism) (Fig. 10)
which can support a broad spectrum of workload switching
algorithms (the policies). We believe such separation be-
tween mechanism and policy can potentially lead to various
remedies to the performance degradation problem due to
undesirable workloads.

7.1 H-Buffer Description

A small number of the zones either shingled or conven-
tional with a user configurable size (e.g. comparable to the
size of media cache) of the drive are reserved as H-Buffer
to which incoming data can be redirected by the host. An
LBA-PBA mapping table that corresponds to the redirection
is maintained in host memory while data blocks are logged
as a self-describing journal similar to the media cache for
mapping recovery. Besides, the host (not the drive) is re-
sponsible for migrating buffered data back to the targeted
zones (H-Buffer cleaning). Practically, this H-Buffer con be
considered as a host-controlled media cache.

7.2 Three Data Paths for HA-SMR Drives

As shown in Fig. 10, an HA-SMR drive natively supports
data path D and @. @), the direct data path, represents
sequential data being directly written to shingled zones; and
@, the media cache data path, denotes non-sequential data
being buffered into the media cache and later migrated to
the intended zones (Sec. 2.5). Our H-Buffer completes the
picture by creating a new data path (Q), the H-Buffer data
path), which is similar to the media cache data path but is
controlled by the host instead of the drive. Note that Host
Aware is the only SMR model that is able to support all
three data paths because it is the only one that can both
handle non-sequential writes and provide zone information
to enable accurate host control.

The three data paths each has its own strength: 1) The
direct path can accept sequential data without any indi-
rection/migration overhead. 2) Media cache data path can
handle non-sequential data cleaning without transferring
data back and forth with the host, thus has a higher data
migrating bandwidth and consumes no extra computational
resource from the host. 3) H-Buffer data path can support
enhanced cleaning algorithm leveraging the host’s bigger
memory and more powerful processors such that it can be
expected to do a better job on data cleaning. In addition,
H-Buffer has the ability to redirect sequential writes too.
7.3 Data Management Separation between The Host

and The Drive

Data path @ has the managing logic in the drive,
while 3 has the controlling intelligence within the host.

12

This three-data-path model separates the handling of non-
sequential writes and even sequential writes between the
host and the drive. Besides, the policy engine switching data
requests among the three data paths is also part of the host
controlling logic. This enables the system designer to find an
optimized combination between the host management and
the drive management.

A host-side management can alleviate the media cache
cleaning overhead by sharing the data handling task. Ac-
tually the host may potentially do a better job because
it has more computational power and RAM size so that
it can support more sophisticated buffering and cleaning
algorithms. In addition, a host-side management has the
advantages of having the knowledge of the workload char-
acteristics. On the other hand, drive-side management does
not consume host computational resources and can leverage
the disk internal bandwidth to do high speed non-sequential
data migration. In all, H-Buffer and the three-data-path
system essentially open a big design space for the policies
switching the requests among the three data paths and the
separation between the host and drive management in order
to combine all the advantages under various workloads.

8 CASE STUDY: SOLVING OPEN ZONE ISSUE

WITH H-BUFFER

In this section, we try to demonstrate the potential of H-
buffer by investigating how it can be used in dealing with
one of the unique features of HA-SMR drive. That is, the
open zone issue for sequential write zones. We find that
there is a clear performance drop if the number of open
zones exceeds the recommend maximum number (Sec. 4.2).

Applications should always respect this recommenda-
tion of 128 maximum number of sequential zones if they
do not want to hurt the performance by the open zone
thrashing phenomenon. However, if some applications do
have a requirement to sequentially write over more than
128 zones simultaneously, the H-Buffer can be used to
absorb the incoming writes and later migrate the data to
the intended zones.

We demonstrate H-Buffer’s potential by designing a
simple workload switching policy (named: open-zone-policy)
which addresses the open zone issue (Sec. 4.2). The open-
zone-policy detects concurrent sequential write streams
(each stream corresponds to sequential writes to a single
open zone) from the workload. If there are more streams
than the recommended maximum number of open zones,
the policy will switch the sequential write streams into the
H-Buffer to maintain the number of sequential open zones
no more than 128.

To evaluate the open-zone-policy, we create a micro-
benchmark workload that contains 200 concurrent sequen-
tial write streams. We assume that system reserves 100 zones
for H-Buffer. We compare the total run time with the open-
zone-policy switched on and off:

o policy switched off: 1000 write operations are directly
issued to 200 zones.

e policy switched on: 1000 write operations are initially
redirected to the H-Buffer (25.6G, comprised of 100
zones and comparable to the size of the media cache).
Then the host performs the H-Buffer cleaning: read

150

13

W. pir resef
zone rewrite

a
hebuf. read === [policy on: h-buf. data path

120 1 hopuf write m—
direct write s policy off: direct data path
£ O aBwios 8KB w0 $ 16KBwW/0 $
2
i 60
4KB w/ $ 8KBw/ $ 16KBw/ $

reset ti m&w,

0

O/}. O/)
Open Zone Policy

256KB w/o ¢

32KB w/o $ 64KB w/o $ 128KB w/o $]

128KB w/ 256KB w/ —

%% %Y

Fig. 11. H-Buffer helps addressing the open zone issue. (“w/ $” means with the write-cache and the read-ahead enabled, and vice versa.)

data out from the H-Buffer, write them to the in-
tended 200 zones, and finally reset the write pointer
for the 100 H-Buffer zones. Note that this is not the
normal case of using H-buffer because typically not
all the write operations need to be redirected.

We perform the test with the I/O size ranging from 4KB
to 256KB. Besides, for each size we experiment with the
drive’s write cache and read ahead enabled or disabled. We
compare the total run time with open-zone-policy turned on
and off (Fig. 11). When open-zone-policy is on, the time is
broken down into H-Buffer redirected write, cleaning read,
zone rewrite and write pointers reset.

We find that resetting 100 zones only takes at most 3
seconds which is negligible compared to the data transmis-
sion time in the figure. In small I/O sizes, the H-Buffer data
path has shorter total time than that of the direct write path.
As the 1/0 size increases, the total time without open-zone-
policy grows slowly and gets surpassed by the total time
with the open-zone-policy. Also, we see a greater advantage
for the open-zone-policy when the write-cache and read-
ahead functions are enabled for the drive. Therefore, the H-
Buffer will bring performance benefit and the benefit is more
significant when write cache and read ahead are enabled
and the I/O request sizes are smaller.

In conclusion, even though we do extra I/O operations
in the H-Buffer case, it still takes less total time than that
of directly writing to a large number of zones. In this case
study, we simply switch all the I/O requests to H-Buffer
data path. However, practical policy can be more sophisti-
cated by handling each individual I/O request differently
and switching each write operation into an optimal data
path.

9 RELATED WORK
9.1 SMR Drive Characterization/Evaluation

Black et al. [26] studied the particular SMR character-
istics in large-scale cold-data archival storage systems in
which the rack-level power provision requires the SMR
drives to be frequently spun up and down. They investi-
gated both performance and reliability characteristics for
HA-SMR and DM-SMR such as spin up latency, disk failure,
etc. They deploy HA-SMR drives as DM-SMR drives with-
out utilizing or evaluating the zoned block APIs while our
work emphasizes the unique HA-SMR zone-aware features

and its system performance implications. Besides, our work
focuses on microscopic performance characteristics for the
HA-SMR drive while Black et al. [26] studied the statistic
behavior for the SMR drives from a macroscopic perspec-
tive.

Aghayev and Desnoyers [12] use both software and
hardware approaches for DM-SMR drive reverse engineer-
ing. In the software part, they use fio and measure the
latency of the I/O to determine the internal structure of
the drive. The hardware part is a high-speed camera mon-
itoring the movement of the read/write head of the drive
through a window on the drive. Different from Skylight’s
hardware and software approach, we leverage the richer-
featured zoned block APISs to collect more information from
inside the drive to interpret the performance results and to
understand the internal structure of the drive.

9.2 SMR Data Handling Solutions

Amer et al. explored the design space for the data layout
of SMR drives [27] [28]. They proposed to have multiple
bands of tracks separated by guard tracks to avoid inter-
ference between each other. Cassuto et al. [15] provided
a definition of indirection system for SMR drives which is
a collection of data structures and algorithms that map
Logical Block Addresses (LBAs) to Physical Block Addresses
(PBAs). Besides, they designed two indirection architectures
for the indirection system, namely shingled set-associative
disk cache and circular buffers with S-blocks.

H-SWD [29] [30] adopted a similar circular log layout
and also implemented hot/cold data identification for data
placement decision. Hall et al. [16] divided SMR drives into
two shingled write regions, i.e. I-region (larger) and E-region
(smaller). I-Region means indirection region, which serves
as the native space for data. In I-Region, data is written
in a sequential manner and the corresponding LBA-PBA
translation is done by the indirection system. He and Du
exploited static [17] and dynamic [18] track level mapping
schemes to reduce the write amplification and garbage
collection overhead.

SES [31] uses the full knowledge of the disk layouts
and allows more efficient optimization compared to a disk
firmware based approach. Jin et al. proposed a file system
called HiSMRfs [32] which separates the meta-data and data
space into SSD and SMR drives.

Manzanares et al. designed a zone-based extent allocator
(ZEA) [33] that only performs sequential allocation for data
and meta-data on SMR drives to maintain the shingled con-
straint. ZEA does not consider exploiting the non-sequential
data handling path that exists in HA-SMR drives.

Our work differs from other SMR data handling solu-
tions in that we focus on the software solution for HA-SMR
model. We propose the three-data-path system (enabled by
H-Buffer) for HA-SMR drives by exploiting each of their
unique interacting model.

10 CONCLUSIONS AND FUTURE WORK

We present a study on Host-Aware SMR drives by
carrying out in-depth performance evaluations on several
HA-SMR sample drives. Specifically, we investigate the
drive internals, the performance impact of the zoned block
APIs and the factors that affect the zone cleaning efficiency.
Based on the empirical observations, we summarized the
system impact and utilize the knowledge obtained from
the evaluation to analyze the replay results of real world
traces. Besides, we propose a host-controlled indirection
buffer framework for improving the performance on HA-
SMR drive systems. A case study of the open zone issue
shows the potential of such host-controlled buffer.

In the future, we plan to further investigate the media
cache cleaning mechanism and explore more production
workloads for testing. Moreover, we are going to compre-
hensively investigate the data path switching policies when
using H-buffer to fit various workloads such that HA-SMR
drives can be used to construct large scale storage systems
that support various types of workloads.

ACKNOWLEDGMENTS

This work has been supported by NSF I/UCRC Center
for Research in Intelligent Storage (CRIS) and the National
Science Foundation (NSF) under awards 130523, 1439622,
and 1525617.

REFERENCES

[1] S. Piramanayagam, “Perpendicular recording media for hard disk
drives,” Journal of Applied Physics, vol. 102, no. 1, p. 011301, 2007.

[2] R. E. Rottmayer, S. Batra, D. Buechel, W. Challener, J. Hohlfeld,
Y. Kubota, L. Li, B. Lu, C. Mihalcea, K. Mountfield et al., “Heat-
assisted magnetic recording,” Magnetics, IEEE Transactions on,
vol. 42, no. 10, pp. 2417-2421, 2006.

[3] M. H. Kryder, E. C. Gage, T. W. McDaniel, W. Challener, R. E.
Rottmayer, G. Ju, Y.-T. Hsia, M. F. Erden ef al., “Heat assisted
magnetic recording,” Proceedings of the IEEE, vol. 96, no. 11, pp.
1810-1835, 2008.

[4] R. L. White, R. Newt, and R. F. W. Pease, “Patterned media: a
viable route to 50 gbit/in 2 and up for magnetic recording?” IEEE
Transactions on Magnetics, vol. 33, no. 1, pp. 990-995, 1997.

[5] R.Wood, M. Williams, A. Kavcic, and J. Miles, “The feasibility of
magnetic recording at 10 terabits per square inch on conventional
media,” Magnetics, IEEE Transactions on, vol. 45, no. 2, pp. 917-923,
2009.

[6] L Tagawa and M. Williams, “High density data-storage using
shinglewrite,” in Proceedings of the IEEE International Magnetics
Conference, 2009.

[7] G. Gibson and M. Polte, “Directions for shingled-write and twodi-
mensional magnetic recording system architectures: Synergies
with solid-state disks,” Parallel Data Lab, Carnegie Mellon Univ.,
Pittsburgh, PA, Tech. Rep. CMU-PDL-09-014, 2009.

[8] Seagate Technology, “Affordable active archive hard drives
for cloud storage.” http:/ /www.seagate.com/enterprise-storage/
hard-disk-drives/archive-hdd/.

(9]

(10]

(11]

[12]

(13]

(14]

(15]

(16]

(17]

(18]

[19]

[20]
[21]
(22]

[23]
[24]

[25]

26]

(27]

(28]

(29]

(30]

[31]

[32]

(33]

14

INCITS T10 Technical Committee, “Information technology -
zoned block commands (zbc).” Draft Standard T10/BSR INCITS
536, American National Standard Institute, Inc., December 2015.
[Online]. Available: http://www.t10.org/drafts.htm

INCITS T13 Technical Committee, “Zoned-device ata command
set (zac) working draft,” http://www.t13.0rg/Documents/
MinutesDefault.aspx?DocumentType=4&DocumentStage=2,
accessed: 2016-01-23.

T. Feldman and G. Gibson, “Shingled magnetic recording areal
density increase requires new data management,” USENIX ;login:,
vol. 38, no. 3, 2013.

A. Aghayev and P. Desnoyers, “Skylight-a window on shingled
disk operation,” in 13th USENIX Conference on File and Storage
Technologies (FAST15), 2015, pp. 135-149.

T. R. Feldman, “Host aware smr” http://open-zfs.org/
w/images/2/2a/Host-Aware_SMR-Tim_Feldman.pdf, OpenZFS
Develop Summit, San Francisco, November 2014.

R. Wood, “The feasibility of magnetic recording at 1 terabit per
square inch,” Magnetics, IEEE Transactions on, vol. 36, no. 1, pp.
3642, 2000.

Y. Cassuto, M. A. Sanvido, C. Guyot, D. R. Hall, and Z. Z.
Bandic, “Indirection systems for shingled-recording disk drives,”
in 26th IEEE Symposium on Mass Storage Systems and Technologies
(MSST10). IEEE, 2010, pp. 1-14.

D. Hall, J. H. Marcos, and J. D. Coker, “Data handling algorithms
for autonomous shingled magnetic recording hdds,” Magnetics,
IEEE Transactions on, vol. 48, no. 5, pp. 1777-1781, 2012.

W. He and D. H. Du, “Novel address mappings for shingled write
disks,” in 6th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 14), 2014.

W. He and D. H. Hu, “Smart: An approach to shingled magnetic
recording translation,” in 15th USENIX Conference on File and
Storage Technologies (FAST17), 2017.

C. Li, P. Shilane, F. Douglis, D. Sawyer, and H. Shim, “Assert (!
defined (sequential i/0)),” in 6th USENIX Workshop on Hot Topics
in Storage and File Systems (HotStorage 14), 2014.

T. R. Feldman, Personal communication, January 2016.

HGST, “libzbc,” https:/ / github.com/hgst/libzbc.

INCITS T10 Technical Committee, “Scsi block commands - 4 (sbc-
4),” http:/ /www.t10.org/members/w_sbc4.htm.

J. Axboe, “Flexible i/o tester,” https://github.com/axboe/fio.

S. Poudyal, “Partial write system,” Jun. 30 2015, uS Patent
9,070,378.

D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Trans-
actions on Storage (TOS), vol. 4, no. 3, p. 10, 2008.

R. Black, A. Donnelly, D. Harper, A. Ogus, and A. Rowstron,
“Feeding the pelican: Using archival hard drives for cold storage
racks,” in 8th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 16), 2016.

A. Amer, D. D. Long, E. L. Miller, J.-F. Paris, and S. Schwarz,
“Design issues for a shingled write disk system,” in 26th IEEE
Symposium on Mass Storage Systems and Technologies (MSST10).
IEEE, 2010, pp. 1-12.

A. Amer,]J. Holliday, D. D. Long, E. L. Miller, J. Paris, and
T. Schwarz, “Data management and layout for shingled magnetic
recording,” Magnetics, IEEE Transactions on, vol. 47, no. 10, pp.
3691-3697, 2011.

C.-I. Lin, D. Park, W. He, and D. H. Du, “H-swd: Incorporating
hot data identification into shingled write disks,” in 20th IEEE
International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS12), 2012.

D. Park, C.-I. Lin, and D. H. Du, “H-swd: A novel shingled write
disk scheme based on hot and cold data identification,” in 10th
USENIX Conference on File and Storage Technologies (FAST12), 2012.
D. Le Moal, Z. Bandic, and C. Guyot, “Shingled file system host-
side management of shingled magnetic recording disks,” in IEEE
International Conference on Consumer Electronics (ICCE12). 1EEE,
2012, pp. 425-426.

C. Jin, W.-Y. Xi, Z.-Y. Ching, F. Huo, and C.-T. Lim, “Hismrfs: A
high performance file system for shingled storage array,” in 30th
International Symposium on Mass Storage Systems and Technologies
(MSST14), June 2014, pp. 1-6.

A. Manzanares, N. Watkins, C. Guyot, D. LeMoal, C. Maltzahn,
and Z. Bandic, “Zea, a data management approach for smr,” in
8th USENIX Workshop on Hot Topics in Storage and File Systems
(HotStorage 16), 2016.

