
A Study of Application Performance with
Non-Volatile Main Memory

Yiying Zhang
University of California, San Diego

yiyingzhang@cs.ucsd.edu

Steven Swanson
University of California, San Diego

swanson@cs.ucsd.edu

Abstract—Attaching next-generation non-volatile mem-
ories (NVMs) to the main memory bus provides low-
latency, byte-addressable access to persistent data that
should significantly improve performance for a wide range
of storage-intensive workloads. We present an analysis of
storage application performance with non-volatile main
memory (NVMM) using a hardware NVMM emulator
that allows fine-grain tuning of NVMM performance
parameters. Our evaluation results show that NVMM
improves storage application performance significantly
over flash-based SSDs and HDDs. We also compare the
performance of applications running on realistic NVMM
with the performance of the same applications running on
idealized NVMM with the same performance as DRAM.
We find that although NVMM is projected to have higher
latency and lower bandwidth than DRAM, these difference
have only a modest impact on application performance. A
much larger drag on NVMM performance is the cost of
ensuring data resides safely in the NVMM (rather than
the volatile caches) so that applications can make strong
guarantees about persistence and consistency. In response,
we propose an optimized approach to flushing data from
CPU caches that minimizes this cost. Our evaluation shows
that this technique significantly improves performance for
applications that require strict durability and consistency
guarantees over large regions of memory.

I. INTRODUCTION

Next-generation non-volatile memory (NVM) tech-
nologies, such as phase change memory (PCM) [14, 16],
spin-transfer torque magnetic memories (STTMs) [12,
26, 36], and the memristor [39] offer low-latency ac-
cess, high bandwidth, efficient fine-grain access, and
persistence [33]. As a result, they have the potential
to bridge the gap between slow, persistent storage
(i.e., disks and SSDs) and fast, volatile memory (i.e.,
DRAM) [17, 18, 25, 39]. Table I summarizes the char-
acteristics of different NVM technologies and compares
them to traditional memory and storage technologies.

Attaching NVMs directly to processors will pro-
duce non-volatile main memories (NVMMs), exposing
the performance, flexibility, and persistence of these
memories to applications. NVMM will blur the line
between traditional memory and storage and pose many
challenges [3, 5, 6, 10, 19, 21, 27, 37, 38] to system
designers.

In order to properly design systems for NVMM, it is
important to understand NVMM performance and how
it will affect application performance.

In this paper, we use a commercial hardware-based
NVMM emulator [10] to analyze the performance of
storage applications running with NVMM. The emulator
models the latency and bandwidth of NVMM as well as
the cost of ensuring that data is safely stored in NVMM.

To gain insights into storage application perfor-
mance with NVMM, we pose the following questions:

• How does NVMM performance affect
application-level performance?

• Which aspects of NVMM performance have
the largest impact on application-level perfor-
mance?

• How can we minimize the cost of ensuring data
is persistent in NVMM-equipped systems?

To answer these questions, we conduct experiments
with microbenchmarks and a set of typical storage
server applications, including a file server, a mail server,
a web server, a NoSql database, a relational database,
and Memcached [11]. We make several findings through
our study.

• Application performance with NVMM is
much better than with SSDs and HDDs.
NVMM improves storage application perfor-
mance significantly over flash-based SSDs and
HDDs (up to 28×), even without any appli-
cation changes. The benefit is especially big
for applications with frequent writes and fsyncs
and for applications with large working sets.
These results confirm that replacing SSDs and
HDDs with NVMM will benefit a wide range
of storage applications.

• NVMM’s lower-than-DRAM performance
has only a small impact on applications.
NVMM’s latency and bandwidth will likely be
somewhat worse than DRAM, but the impact
of this difference will be small. NVMMs with
longer latencies and lower bandwidths than
DRAM provide almost the same performance978-1-4673-7619-8/15/$31.00 c© 2015 IEEE

DRAM NAND Flash HDD PCM Other NVMs

Density (F 2) 6-12 1-4 2/3 4-16 4-60
Read Latency 10-50 ns 25µs 5ms 48-70 ns 10-100 ns
Write Bandwidth 1GB/s per die 5-40MB/s per die 100MB/s per drive 100MB/s per die 140MB/s - 1GB/s per die
Endurance (cycles) > 10

16
10

4 > 10
16

10
9

10
12 − 10

15

Byte Addressable Yes No No Yes Yes
Volatile Yes No No No No

TABLE I: Comparison of Memory and Storage Technologies. Properties and performance comparison of memory,
storage, and NVM [4, 22, 24, 25, 30, 34, 39]. Other NVMs include the Memristor, STTM, FeRAM, and MRAM.

Fig. 1: PMEP Architecture. Lat, BW, and WB represent the place
where PMEP emulates NVMM’s increased latency, reduced bandwidth, and
wbarrier costs.

Configuration Description
LREAD Read Latency
ThBW Read/Write Bandwidth Throttling
LWBAR Write Barrier Latency
MFLUSH clflush mode
MSY NC NVMM sync mode

TABLE II: PMEP Parameters. The top three
rows are parameters to configure the emulated
hardware NVMM performance. The bottom two
rows are the optimization techniques that PMEP
supports and we propose.

as idealized NVMMs with DRAM-like perfor-
mance. For our applications, with the exception
of Memcached, NVMM’s increased latency and
reduced bandwidth degrade performance by
less than 10% relative to DRAM. This finding
implies that further optimization of NVMM’s
latency and bandwidth will not be as beneficial.

• Data persistence can be extremely costly.
Making data persistent (i.e., “syncing” it) on
NVMM involves costly processor cache flush
operations. This cost is especially high for
applications that frequently sync large regions
of memory.

Based on this last finding, we propose Selective
Persistence Flushing (SPF), a technique to minimize the
cost of ensuring data persistence by flushing only mod-
ified data from the caches. SPF significantly improves
performance for storage applications that require strict
durability and consistency guarantees over large regions
of memory.

The rest of the paper proceeds as follows. Section II
describes the emulator we use for our study. Section III
presents the performance characterization of the em-
ulator and our optimization of the data sync process.
Section IV evaluates storage applications running on
NVMM. In Section V, we summarize our key obser-
vations and discuss the implications of them. Finally,
we discuss related work in Section VI and conclude the
paper in Section VII.

II. NVMM EMULATOR

To model different types of NVMMs and to study
their effects in real systems, we use PMEP [10], a
platform built by Intel to emulate NVMM. This section
describes how PMEP emulates NVMM and its param-
eters. Figure 1 depicts the architecture of PMEP.

PMEP augments an off-the-shelf, dual-socket server
platform with special CPU microcode and custom
firmware. It partitions the system’s DRAM into emu-
lated NVMM and regular DRAM. Each processor uses
four DDR3 channels. PMEP treats channels 0-1 as
regular DRAM and channels 2-3 as emulated NVMM.
PMEP hides the memory in channels 2-3 from the OS
and exposes it as a separate memory area to the kernel.

PMEP emulates NVMM read latency, read and write
bandwidth, and data persistence costs. For latency and
bandwidth, PMEP modifies CPU and memory con-
troller. It uses software to emulate data persistence costs.
Table 2 summarizes the parameters of PMEP.

A. NVMM Latency

Current projections indicate that most future NVMM
technologies will have higher latency than DRAM [33].
PMEP emulates NVMM read latency (LREAD) by
increasing the number of cycles the CPU stalls for
the data from NVMM on a cache miss. For example,
if the CPU stalls SDRAM cycles for a read from
DRAM with latency LDRAM , PMEP stalls the CPU for
SDRAM × LREAD/LDRAM form NVMM. Since the
PMEP platform uses write-back CPU caches, NVMM
write latency does not directly affect the application
latency. Thus, PMEP does not emulate NVMM write
latency and emulates NVMM’s write performance by
limiting its write bandwidth.

B. NVMM Bandwidth

Due to increased latency and power limitations,
NVMM will likely provide less bandwidth than
DRAM [33]. PMEP’s memory controller artificially re-
stricts memory read and write bandwidth by limiting the
maximum DDR transaction rate. The ThBW parameter
controls this setting.

Configured Latency (ns)
0 200 400 600 800 1000

M
e

a
s
u

re
d

 L
a

te
n

c
y
 (

n
s
)

0

200

400

600

800

measured
ideal

Fig. 2: NVMM Load Latency.
Measured NVMM load latency when
varying LREAD . The thin line repre-
sents the expected latency with perfect
emulation.

Configured Bandwidth Ratio
0 0.25 0.5 0.75 1M

e
a

s
u

re
d

 B
a

n
d

w
id

th
 (

G
B

/s
)

0

10

20

30

40

read
write

Fig. 3: NVMM Bandwidth. Mea-
sured NVMM read and write bandwidth
when varying ThBW from 1/16 to 1×
of the DRAM bandwidth.

L (usec) WBAR

1 10 100 1000

m
s
y
n
c
 L

a
te

n
c
y
 (

m
s
e
c
)

0

0.2

0.4

0.6

0.8

1

Fig. 4: msync Latency with Differ-
ent LWBAR. The latency of a one-
byte modification followed by an msync
for different values for LWBAR.

C. Data Persistence

In an NVMM-equipped system, data is only per-
sistent if it resides in the NVMM rather than the
processors’ volatile caches. Application code or the
kernel running on PMEP can emulate the cost of making
their data persistent by issuing sync calls like msync
and fsync. The PMEP kernel module emulates the sync
operation by flushing data from CPU cache lines using
a sequence of clflush instructions followed by an sfence
to enforce ordering. PMEP then issues an emulated
persistent barrier, wbarrier, which ensures the durability
of the flushed data in NVMM. To model different
wbarrier costs (LWBAR), the PMEP kernel module
adds a delay before the wbarrier.

The clflush instruction that PMEP uses by default
is expensive [10] because it makes strong ordering
guarantees. PMEP provides an alternative CPU cache
flush mechanism, Weakly-Ordered clflush (WOF). WOF
emulates the performance of a weakly ordered cache
flush operation by performing a read followed by a non-
temporal write, which flushes and invalidates the cache
line.

Besides these two methods provided by PMEP, there
are also two instructions recently added by Intel for
efficient cache flushes, clflushopt and clwb [8]. The
clflushopt instruction reduces the ordering guarantee
over clflush and only orders cache flushes by store-
fence operations such as sfence. The clwb instruction
also orders cache flushes only by store-fence operations,
but does not force to throw away cache lines from the
cache.

III. EMULATOR CHARACTERIZATION AND

OPTIMIZATION

This section characterizes the PMEP platform, dis-
cusses how its configuration parameters affect perfor-
mance, and presents an optimization to mitigate the cost
of ensuring persistence in NVMM.

The PMEP platform in our experiments has two
2.6GHz 8-core Intel Xeon processors, 40MB of ag-
gregate CPU cache, 8GB of DDR3 DRAM used as

normal DRAM, and 128GB of DRAM used as emu-
lated NVMM. The platform also has a 240GB Intel
520-series SSD and a 7200RPM 4TB hard disk. The
platform runs Ubuntu 13.10 with a 3.11 Linux kernel
with PMEP-specific changes. The customized kernel
performs clflush’s (or other cache flush instructions) to
the data in an application msync call and issues an sfence
and a write barrier after completing the clflush’s.

A. Load and Store

PMEP emulates NVMM’s increased read latency
and reduced bandwidth. We change LREAD and ThBW

and use the Intel mlc tool [13] to evaluate the resulting
memory access latency and bandwidth.

Figure 2 plots the measured memory load (read)
latency when changing LREAD from 0 ns to 1000 ns.
The measured latency when LREAD is below 150 ns
stays the same, suggesting that 150 ns is the actual
DRAM read latency and the lowest latency PMEP
can emulate. The measured latency stays close to the
configured latency from 150 ns up to 600 ns. Since
most projections of next-generation NVMs fall into this
range of latency performance (1-4× latency compared
to DRAM), PMEP can accurately emulate a range of
potential NVMMs.

Figure 3 plots the memory load and store (read
and write) bandwidth with PMEP configured to provide
between 1 and 1/16 of the default DRAM bandwidth.
The data shows that PMEP accurately emulates NVMM
bandwidth reductions.

B. NVMM Sync

Since the caches in an NVMM-equipped systems
are volatile, system designers must take special care
to ensure that data the program believes is persistent
actually resides in NVMM. This requires flushing the
data from the caches and issuing a wbarrier that ensures
data durability on NVMM before program execution
continues. To measure the costs of ensuring data persis-
tence, we use a microbenchmark that repeatedly writes
one byte and issues an msync for a data area containing
the byte.

msync size (MB)

1 10 50 100

m
s
y
n

c
 L

a
te

n
c
y
 (

m
s
e

c
)

0

50

100

150

200

250

default−NVMM
clflushopt
HDD
WOF
clwb
SPF
SSD

Fig. 5: msync Performance. The latency of performing
one-byte modification followed by an msync to a memory
region ranging from one byte to 100MB.

To understand the impact of wbarrier latency, we
change the LWBAR parameter in PMEP and measure
the average latency to write and then msync one byte.
Figure 4 presents these latencies. As expected, the
average latency increases with higher LWBAR, since
a wbarrier is issued for each msync call. Therefore,
PMEP can emulate the cost of hardware wbarrier with
its software delay.

To understand the cost of flushing data from cache,
we perform a similar experiment of modifying one
byte and issuing an msync, but we vary the size of
memory region in msync. Figure 5 shows the average
latency of this operation for NVMM, SSD, and HDD,
for msync regions ranging in size from one byte to
100MB. For NVMM, we test four different ways of
flushing CPU caches: using the PMEP default clflush
instruction (default-NVMM), using non-temporal write
(WOF), using the clflushopt instruction (clflushopt), and
using the clwb instruction (clwb).

For all these four methods, the msync performance
cost rises linearly with the memory region’s size.
Default-NVMM and clflushopt both perform poorly
when the memory region size is big. For memory
regions larger than 10MB, their performance can be
even worse than executing msync on HDD. WOF and
clwb perform better than default-NVMM and clflushopt.
However, their msync latency still increase linearly with
memory region size, approaching the msync latency of
an HDD when the msync size is 100MB.

The poor msync performance with large msync size
is because the default implementation of msync in
PMEP issues clflush for each cache line in the msync
area. However, many of these flushes are unnecessary,
since only modified data needs to be flushed from the
CPU cache. The average latencies for both SSD and
HDD stay constant when varying msync size, since,
for those devices, the kernel only flushes the page
containing the updated byte from the page cache.

C. Reducing NVMM Sync Costs

To reduce the cost of data persistence, we propose
Selective Persistence Flushing (SPF), an optimization
technique to flush only modified cache lines rather than
all of the cache lines in a sync call.

When an application makes a sync call, we check
the dirty bit in the page table for each memory page in
the sync region. If the dirty bit is set, the page has been
modified. We flush the page from the CPU cache and
reset the dirty bit. For sync region that is smaller than a
page, we only flush the cache lines in the region, if the
page is dirty. But we do not reset the dirty bit in this
case, since the page can still contain other dirty data.

Figure 5 shows the msync performance of SPF. SPF
significantly reduces the cost of msync as compared to
the default PMEP msync and the other optimized cache
flushing methods, especially with large msync regions.
SPF only flushes the modified byte instead of the whole
msync region. Thus, its performance does not grow with
increasing msync region size.

IV. APPLICATION PERFORMANCE

This section evaluates the performance of storage
applications using NVMM. Table III summarizes the
applications and workloads we use in our study. These
applications include a file server, a mail server, a web
server, a NoSql database, a relational database, and
Memcached.

Table IV summarizes the NVMM configurations
we use for our application study. To provide a base-
line, we start with a system that models NVMM with
the same performance as DRAM (PDRAM). Since it
models NVMM, PDRAM performs cache flushes and
barriers that are necessary to ensure data persistence.
Then, we use PMEP to test configurations that increase
NVMM latency (PM-Lat), reduce bandwidth (PM-BW),
and, finally, increase wbarrier (NVMM-Raw). NVMM-
Raw models all of NVMM’s projected characteristics.
Next, we add two optimizations, WOF and SPF, to
NVMM-Raw and measure their impact on performance.
The final, fully optimized system is NVMM-Opt.

We also compare the performance of applica-
tions running on NVMM, flash-based SSD, HDD, and
DRAM. For applications that run on a file system (all
the applications except Memcached in Table III), we
use the Persistent Memory File System (PMFS) [10]
for NVMM, ext4 for SSD and HDD, and tmpfs for
DRAM. The DRAM configuration differs from PDRAM

since it does not include cache flushes or barriers for
persistence. The key difference between PMFS and con-
ventional file systems is that physical pages of NVMM
reside permanently in the kernel’s address space rather
than being paged between storage and the buffer cache.

Application Type Workloads Data Size
FileBench file system FileServer, WebServer, and Varmail 1.1GB,64MB,700MB
MongoDB nosql DBMS YCSB 170MB
MySQL relational DBMS TPC-C 9.5GB
Memcached key-value cache Memtier 323MB

TABLE III: NVMM Applications. NVMM applications, their types, the workloads we use in our evaluation to represent
them, and the total size of these workloads. FileBench, MongoDB, and MySQL use NVMM as persistent storage, while Memcached
uses NVMM as a big memory.

Configuration LREAD (ns) ThBW LWBAR (µs) MFLUSH MSY NC

PDRAM 150 1 0 default default
PM-Lat 300 1 0 default default
PM-BW 300 1/8 0 default default
NVMM-Raw 300 1/8 1 default default
NVMM-WOF 300 1/8 1 WOF default
NVMM-Opt 300 1/8 1 WOF SPF

TABLE IV: Selected NVMM Configurations. The NVMM configurations we use for our study. ThBW represents the
ratio to DRAM bandwidth.

Varmail FileServer WebServer

T
h

ro
u

g
h

p
u

t
R

a
ti
o

 t
o

 P
D

R
A

M

0

0.2

0.4

0.6

0.8

1

PDRAM PM−Lat PM−BW NVMM−Raw NVMM−WOF NVMM−Opt

Fig. 6: Filebench Throughput with Different NVMM
Configurations.

Varmail FileServer WebServer

T
h
ro

u
g
h
p
u
t
R

a
ti
o
 t
o
 D

R
A

M

0

0.2

0.4

0.6

0.8

1

1.2

1.4

NVMM−Raw NVMM−Opt SSD HDD DRAM

Fig. 7: Filebench Throughput with Different Media.

A. FileBench

We evaluate NVMM with PMFS running file system
applications using the Varmail, FileServer, and Web-
Server workloads from the Filebench suite [31]. These
workloads models typical mail server, file server, and
web server access patterns.

Figure 6 plots the Filebench throughput of different
NVMM configurations. Performance with the NVMM
configurations are similar for FileServer and WebServer,
but PM-Lat lowers Varmail performance by 12%.

Figure 7 shows Filebench throughput for NVMM,
SSD, HDD, and DRAM. For all three workloads,
NVMM outperforms SSD and HDD. Its performance
is worse than DRAM for Varmail and similar for
WebServer. Surprisingly, NVMM outperforms DRAM
for FileServer by 32%. We believe this is because PMFS
is more efficient than tmpfs for some operations and
because PMFS directly maps NVMM without a buffer
cache while tmpfs moves data between the DRAM file
store and the buffer cache and doubles the memory
copying costs.

Workload Read Update Scan Insert Read&Update
A 50 50 - - -
B 95 5 - - -
C 100 - - - -
D 95 - - 5 -
E - - 95 5 -
F 50 - - - 50

TABLE V: YCSB Workload Properties. The percent-
age of different operations in each YCSB workload.

B. MongoDB

MongoDB [20] is a NoSql database that stores its
data in memory-mapped files and use memory loads
and stores for data access. By default, MongoDB uses
its JOURNALED mode, in which it logs data to a journal
file so it can respond to the client quickly. Then, it lazily
checkpoints the data to a global data file. MongoDB also
supports a FSYNC SAFE mode, which only uses the data
file without journaling.

YCSB [7] is a benchmark that evaluates key-value
stores. YCSB includes six workloads that imitate web
application data access patterns. Table V summarizes
the YCSB workloads. Each workload performs 1000

A B C D E F

T
h

ro
u

g
h

p
u

t
R

a
ti
o

 t
o

 P
D

R
A

M

1

10

100

PDRAM PM−Lat PM−BW NVMM−Raw NVMM−WOF NVMM−Opt

Fig. 8: YCSB Throughput with Different NVMM
Configurations on FSYNC SAFE MongoDB.

A B C D E F

T
h
ro

u
g
h
p
u
t
R

a
ti
o
 t
o
 D

R
A

M

0

0.2

0.4

0.6

0.8

1

NVMM−Raw NVMM−Opt SSD HDD DRAM

Fig. 9: YCSB Throughput with Different Media on
FSYNC SAFE MongoDB.

A B C D E F

T
h
ro

u
g
h
p
u
t
R

a
ti
o
 t
o
 D

R
A

M

0

0.2

0.4

0.6

0.8

1

1.2

NVMM−Raw NVMM−Opt SSD HDD DRAM

Fig. 10: YCSB Throughput with Different Media on
JOURNALED MongoDB.

operations on a database with 1000 1 kB records.

Figure 8 presents the YCSB throughput of dif-
ferent NVMM configurations using the MongoDB
FSYNC SAFE mode. For the five workloads that contain
writes, NVMM-WOF provides a small improvement over
NVMM-Raw, and NVMM-Opt has a significant improve-
ment (notice the log scale on the Y axis). MongoDB’s
FSYNC SAFE mode fsync’s the MongoDB data file after
each write operation and blocks the client call until this
operation completes. Without SPF, the system performs
clflush to the whole data file, while SPF only flushes the
changed data and thus enables significantly improved
performance.

Figure 9 plots the YCSB throughput of NVMM,
SSD, HDD, and DRAM using MongoDB FSYNC SAFE.
NVMM-Opt outperforms SSD and HDD significantly,
while NVMM-Raw is worse than SSD and HDD for
write-intensive workloads.

We also evaluate NVMM performance with Mon-
goDB’s JOURNALED mode. Figure 10 plots the com-
parison of NVMM, SSD, HDD, and DRAM. The per-
formance of NVMM-Opt is close to or better than DRAM
(1% worse to 16% better). NVMM’s improvement over
SSD or HDD with JOURNALED is smaller than with
FSYNC SAFE, because with JOURNALED, MongoDB
does not perform fsync and only waits for the write
to the journal file, which is small enough to fit in the
page cache.

C. MySQL

MySQL [32] is a widely-used relational database.
To exercise MySQL, we use TPC-C [35], a benchmark
that models database online transaction processing. Our
configuration uses a middle-size database with 100
warehouse, 100 clients, and 9.4GB of data.

Figure 11 plots the TPC-C throughput when storing
the database on NVMM with different configurations,
SSD, HDD, and DRAM. Overall, NVMM delivers
better performance than SSD and HDD by 1.8× and
28×, and is only 10% slower than DRAM. Across
the NVMM configurations, bandwidth has the biggest
impact on TPC-C throughput, followed by read latency.
SPF improves the throughput by 7% over NVMM-Raw.

From the results of MySQL and MongoDB, we find
SPF to be most effective with database applications,
since database workloads often sync data frequently to
ensure strict durability and consistency.

D. Memcached

Memcached [11] is an in-memory key-value store
used widely to cache data for large web sites. Mem-
cached uses NVMM as an extension to main memory
that provide more capacity, but lower performance. To
evaluate NVMM’s impact on Memcached performance,
we use Memtier [28], a benchmark for key-value stores.
We use set-to-get ratios of 1:6 and 1:30 [1, 2], 10-500
byte data size, and 100000 requests.

Figure 12 plots the throughput of Memcached with
different NVMM latency and bandwidth configurations.
As expected, the Memcached throughput drops with
higher read latency and lower bandwidth. Compared
to DRAM, a typical NVMM configuration (NVMM-
Raw) causes 23% performance overhead. Even though
NVMM performs worse than DRAM, it is still use-
ful as main memory, since it offers more capacity
than DRAM, which is crucial for large-scale applica-
tions [23].

V. SUMMARY AND DISCUSSION

This section summarizes our findings from our eval-
uation and discusses their systems implications.

P
D

R
A

M

P
M

−
L
a
t

P
M

−
B

W

N
V

M
M

−
R

a
w

N
V

M
M

−
W

O
F

N
V

M
M

−
O

p
t

S
S

D

H
D

D

D
R

A
M

T
h
ro

u
g
h
p
u
t
(T

p
m

C
)

0

2000

4000

6000

8000

10000

12000

Fig. 11: MySQL TPC-C Throughput. Throughput is
measured in Transactions per Minute (TpmC).

Configured Latency (ns)

0 100 200 300 400 500

T
h

ro
u

g
h

p
u

t
(t

h
o

u
s
a

n
d

 I
O

P
S

)

0

50

100

150

200

250

300

BW=1
BW=1/8

Fig. 12: Memcached Throughput.

First, NVMM improves storage application perfor-
mance significantly over SSD and HDD. NVMM’s
higher latency and lower bandwidth than DRAM does
not have big impact on storage applications. In most
cases, storage application performance with NVMM
configuration is very close to the performance of an ide-
alized NVMM with DRAM configuration. As described
in a recent survey of non-volatile memory technology
trends [33], the density of promising NVM technologies
continue to go up and some of them are approaching the
density of NAND flash. Therefore, NVMM could serve
as a very fast storage device for storage applications.

Second, the cost of data persistence can be a major
factor in NVMM performance degradation. Both the
performance of flushing data to NVMM and the amount
of data to flush can affect storage application perfor-
mance. Optimized cache flush instructions help reduce
the cost of making data persistent. Our selective cache
flushing technique significantly reduces the amount of
data to flush. These optimizations are especially effec-
tive with database applications, since they often sync
data frequently for strong consistency and durability.

Finally, when using NVMM as a big memory for
memory-intensive applications, we see a small perfor-
mance drop over DRAM. This performance drop is still
acceptable for many applications. Therefore, NVMM
will also be useful for applications that need a large
memory or require lower energy consumption.

VI. RELATED WORK

Recent years have seen increased interest in
NVMM [3, 5, 6, 10, 19, 21, 25, 27, 37, 38]. This section
discusses previous NVMM evaluations and how they
differ from our work.

Simulation is a common method used in NVMM-
related research [6, 15, 19, 25, 27]. Simulators can
only run traces but not real-time workloads and bench-
marks. Moreover, they often lack or simplify real system

properties and effects. We use a hardware emulator
to study storage application performance. Emulation
provides a more realistic environment by using real
system software and hardware.

Another method used in previous research [6, 29,
38] is to treat unmodified DRAM as NVMM. These
works do not model NVMM’s higher latency, lower
bandwidth, or data persistence costs. We study these
properties and their effects on storage applications.

Several works on NVMM [4, 5, 9, 10, 37] used
emulation for their evaluation. Mnemosyne [37] only
emulates NVMM’s slower writes and write barrier but
not reads. PMBD [4] uses a similar method to model
NVMM latency, but does not model its data persistence
costs. NV-Heaps [5] use a sampling-based emulation
approach combined with a processor simulator to esti-
mate performance costs. The emulator we use models
NVMM’s latency, bandwidth, and data persistence costs
with customized hardware and software.

Two recent works [9, 10] also use the PMEP sys-
tem. PMFS [10] uses PMEP to evaluate their pro-
posed NVMM-oriented file system. DeBrabant et al. [9]
evaluated NVMM performance for database systems
with MySQL and an NVMM-optimized database. Their
study only uses two NVMM configurations with in-
creased latency and compare them with DRAM. We
offer a detailed analysis of the impact of various NVMM
configurations on storage applications, databases, and
Memcached. We also evaluate several different opti-
mizations of the data persistence process.

Finally, concurrently to this work, Sehgal et al.
conducted a study of file system performance on
NVMM [29]. Their focus is on evaluating different file
systems and various file system configurations and they
only use DRAM as the stand-in for NVMM. We study a
wide range of applications and use a hardware emulator
to evaluate the effect of various NVMM performance
characteristics.

VII. CONCLUSION

We present a study of NVMM for storage server
applications using a hardware NVMM emulator. Our
evaluation results show that NVMM improves the per-
formance of storage applications over SSD and HDD.
However, the cost of making data persistent on NVMM
can significantly reduce the performance of applications
that require strict durability and consistency guarantees
over large regions of memory. Our proposed opti-
mization technique solves this problem by selectively
flushing data. The resulting system has similar or even
better performance than DRAM for certain storage
applications.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their enor-
mously valuable feedback and comments, which have
substantially improved the content and presentation of
this paper. We also thank Dulloor Subramanya, Jeff
Jackson, and the vLab team from Intel Corp. for their
help with the PMEP platforms. Finally, we thank the
members of the NVSL research group for their insight-
ful comments.

This work was supported in part by the Center for
Future Architectures Research (C-FAR), one of six cen-
ters of STARnet, a Semiconductor Research Corpora-
tion program sponsored by MARCO and DARPA. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and
do not necessarily reflect the views of C-FAR or other
institutions.

REFERENCES

[1] D. Andersen, J. Franklin, M. Kaminsky, A. Phan-
ishayee, L. Tan, and V. Vasudevan. FAWN: A
Fast Array of Wimpy Nodes. In Proceedings of

the 22nd ACM Symposium on Operating Systems

Principles (SOSP ’09), Big Sky, Montana, October
2009.

[2] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang,
and M. Paleczny. Workload Analysis of a Large-
scale Key-value Store. In Proceedings of the 12th

ACM SIGMETRICS/PERFORMANCE Joint Inter-

national Conference on Measurement and Mod-

eling of Computer Systems (SIGMETRICS ’12),
London, United Kingdom, June 2012.

[3] K. Bailey, L. Ceze, S. D. Gribble, and H. M.
Levy. Operating System Implications of Fast,
Cheap, Non-volatile Memory. In Proceedings of

the 13th USENIX Conference on Hot Topics in

Operating Systemsi (HotOS ’13), Napa, California,
May 2011.

[4] F. Chen, M. P. Mesnier, and S. Hahn. A Pro-
tected Block Eevice for Persistent Memory. In

Proceedings of the 2014 IEEE Symposium on Mass

Storage Systems and Technologies (MSST ’14),
Santa Clara, California, June 2014.

[5] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp,
R. K. Gupta, R. Jhala, and S. Swanson. NV-
Heaps: Making Persistent Objects Fast and Safe
with Next-generation, Non-volatile Memories. In
Proceedings of the 16th International Conference

on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS ’11),
New York, New York, March 2011.

[6] J. Condit, E. B. Nightingale, C. Frost, E. Ipek,
D. Burger, B. C. Lee, and D. Coetzee. Better
I/O through Byte-Addressable, Persistent Memory.
In Proceedings of the 22nd ACM Symposium on

Operating Systems Principles (SOSP ’09), Big
Sky, Montana, October 2009.

[7] B. F. Cooper, A. Silberstein, E. Tam, R. Ra-
makrishnan, and R. Sears. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings

of the 1st ACM Symposium on Cloud Computing

(SoCC ’10), New York, New York, June 2010.
[8] I. Corp. Intel Architecture Instruction Set

Extensions Programming Reference. https://
software.intel.com/sites/default/files/managed/0d/
53/319433-022.pdf.

[9] J. DeBrabant, J. Arulraj, A. Pavlo, M. Stonebraker,
S. Zdonik, and S. Dulloor. A Prolegomenon on
OLTP Database Systems for Non-Volatile Mem-
ory. In Proceedings of the 5th International Work-

shop on Accelerating Data Management Systems

Using Modern Processor and Storage Architec-

tures (ADMS ’14), 2014.
[10] S. R. Dulloor, S. Kumar, A. Keshavamurthy,

P. Lantz, D. Reddy, R. Sankaran, and J. Jackson.
System software for persistent memory. In Pro-

ceedings of the EuroSys Conference (EuroSys ’14),
Amsterdam, The Netherlands, April 2014.

[11] B. Fitzpatrick. Distributed Caching with Mem-
cached. Linux Journal, 2004(124):5, August 2004.

[12] M. Hosomi, H. Yamagishi, T. Yamamoto,
K. Bessho, Y. Higo, K. Yamane, H. Yamada,
M. Shoji, H. Hachino, C. Fukumoto, et al. A
Novel Nonvolatile Memory with Spin Torque
Transfer Magnetization Switching: Spin-RAM. In
Electron Devices Meeting, 2005. IEDM Technical

Digest. IEEE International, pages 459–462, 2005.
[13] Intel Corporation. Intel Memory Latency

Checker. https://software.intel.com/en-us/articles/
intelr-memory-latency-checker.

[14] B. G. Johnson and C. H. Dennison. Phase Change
Memory, September 2004. US Patent 6,791,102.

[15] S. Kannan, A. Gavrilovska, and K. Schwan. Re-
ducing the cost of persistence for nonvolatile
heaps in end user devices. In Proceedings of

the 20th IEEE International Symposium on High

https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/sites/default/files/managed/0d/53/319433-022.pdf
https://software.intel.com/en-us/articles/intelr-memory-latency-checker
https://software.intel.com/en-us/articles/intelr-memory-latency-checker

Performance Computer Architecture (HPCA ’14),
Orlando, Florida, February 2014.

[16] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao,
E. Ipek, O. Mutlu, and D. Burger. Phase-change
technology and the future of main memory. IEEE
micro, 30(1):143, 2010.

[17] M.-J. Lee, C. B. Lee, D. Lee, S. R. Lee, M. Chang,
J. H. Hur, Y.-B. Kim, C.-J. Kim, D. H. Seo, S. Seo,
et al. A Fast, High-Endurance and Scalable Non-
Volatile Memory Device Made from Asymmetric
Ta2O(5-x)/TaO(2-x) Bilayer Structures. Nature

materials, 10(8):625–630, 2011.
[18] Micron Technology Inc. P8P Parallel Phase

Change Memory (PCM). http://www.micron.com/
∼/media/Documents/Products/Data%20Sheet/
PCM/p8p% parallel pcm ds.pdf.

[19] J. C. Mogul, E. Argollo, M. Shah, and
P. Faraboschi. Operating System support for
NVM+DRAM Hybrid Main Memory. In Pro-

ceedings of the 12th Workshop on Hot Topics

in Operating Systems (HotOS ’09), Monte Verita,
Switzerland, May 2009.

[20] MongoDB Inc. MongoDB. http://www.mongodb.
org/.

[21] I. Moraru, D. G. Andersen, M. Kaminsky, N. To-
lia, P. Ranganathan, and N. Binkert. Consistent,
Durable, and Safe Memory Management for Byte-
addressable Non Volatile Main Memory. In Con-

ference on Timely Results in Operating Systems

(TRIOS ’13), Farmington, Pennsylvania, Novem-
ber 2013.

[22] H. Nazarian. Crossbar Resistive
Memory: The Future Technology for
NAND Flash. http://www.crossbar-
inc.com/assets/img/media/Crossbar-RRAM-
Technology-Whitepaper-080413.pdf.

[23] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny,
D. Peek, P. Saab, D. Stafford, T. Tung, and
V. Venkataramani. Scaling Memcache at Face-
book. In In Proceedings of the 10th USENIX

Symposium on Networked Systems Design and

Implementation (NSDI ’13), Lombard, IL, April
2013.

[24] Numonyx Inc. Phase Change Memory. http://
www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf.

[25] M. K. Qureshi, V. Srinivasan, and J. A. Rivers.
Scalable High Performance Main Memory Sys-
tem Using Phase-change Memory Technology.
In Proceedings of the 36th Annual International

Symposium on Computer Architecture (ISCA ’09),
Austin, Texas, June 2009.

[26] D. Ralph and M. D. Stiles. Spin Transfer Torques.
Journal of Magnetism and Magnetic Materials,
320(7):1190–1216, 2008.

[27] L. E. Ramos, E. Gorbatov, and R. Bianchini.

Page Placement in Hybrid Memory Systems. In
Proceedings of the International Conference on

Supercomputing (ICS ’11), Tucson, Arizona, 2011.
[28] Redis Labs. Memtier Benchmark. https://github.

com/RedisLabs/memtier benchmark.
[29] P. Sehgal, S. Basu, K. Srinivasan, and K. Voru-

ganti. An Empirical Study of File Systems on
NVM. In Proceedings of the 2015 IEEE Sympo-

sium on Mass Storage Systems and Technologies

(MSST ’15), Santa Clara, CA, June 2015.
[30] H. Shiga, D. Takashima, S. Shiratake, K. Hoya,

T. Miyakawa, R. Ogiwara, R. Fukuda,
R. Takizawa, K. Hatsuda, F. Matsuoka,
Y. Nagadomi, D. Hashimoto, H. Nishimura,
T. Hioka, S. Doumae, S. Shimizu, M. Kawano,
T. Taguchi, Y. Watanabe, S. Fujii, T. Ozaki,
H. Kanaya, Y. Kumura, Y. Shimojo, Y. Yamada,
Y. Minami, S. Shuto, K. Yamakawa, S. Yamazaki,
I. Kunishima, T. Hamamoto, A. Nitayama, and
T. Furuyama. A 1.6GB/s DDR2 128Mb Chain
FeRAM with Scalable Octal Bitline and Sensing
Schemes. In IEEE International Solid-State

Circuits Conference, (ISSCC ’09), San Francisco,
California, February 2009.

[31] Sun Microsystems. Solaris Internals: FileBench.
http://www.solarisinternals.com/wiki/index.php/
FileBench.

[32] Sun Microsystems. MySQL White Papers, 2008.
[33] K. Suzuki and S. Swanson. A Survey of

Trends in Non-Volatile Memory Technologies:
2000-2014. In the 7th International Memory

Workshop (IMW’15), Monterey, CA, May 2015.
[34] R. Takemura, T. Kawahara, K. Miura, H. Ya-

mamoto, J. Hayakawa, N. Matsuzaki, K. Ono,
M. Yamanouchi, K. Ito, H. Takahashi, S. Ikeda,
H. Hasegawa, H. Matsuoka, and H. Ohno. 32-
mb 2t1r spram with localized bi-directional write
driver and ‘1’/‘0’ dual-array equalized reference
cell. In 2009 Symposium on VLSI Circuits (VLSI

’09), Kyoto, Japan, June 2009.
[35] Transaction Processing Council. TPC Benchmark

C Standard Specification, Revision 5.11. Technical
Report, 2010.

[36] A. Tulapurkar, Y. Suzuki, A. Fukushima, H. Kub-
ota, H. Maehara, K. Tsunekawa, D. Djayaprawira,
N. Watanabe, and S. Yuasa. Spin-Torque Diode
Effect in Magnetic Tunnel Junctions. Nature,
438(7066):339–342, 2005.

[37] H. Volos, A. J. Tack, and M. M. Swift.
Mnemosyne: Lightweight persistent memory. In
Proceedings of the Sixteenth International Con-

ference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’11),
New York, New York, March 2011.

[38] X. Wu and A. Reddy. Scmfs: A file system for
storage class memory. In International Conference

http://www.micron.com/~/media/Documents/Products/Data%20Sheet/PCM/p8p% _parallel_pcm_ds.pdf
http://www.micron.com/~/media/Documents/Products/Data%20Sheet/PCM/p8p% _parallel_pcm_ds.pdf
http://www.micron.com/~/media/Documents/Products/Data%20Sheet/PCM/p8p% _parallel_pcm_ds.pdf
http://www.mongodb.org/
http://www.mongodb.org/
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf
http://www.pdl.cmu.edu/SDI/2009/slides/Numonyx.pdf
https://github.com/RedisLabs/memtier_benchmark
https://github.com/RedisLabs/memtier_benchmark
http://www.solarisinternals.com/wiki/index.php/FileBench
http://www.solarisinternals.com/wiki/index.php/FileBench

for High Performance Computing, Networking,

Storage and Analysis (SC ’11), Nov 2011.
[39] J. J. Yang, D. B. Strukov, and D. R. Stewart.

Memristive devices for computing. Nature nan-

otechnology, 8(1):13–24, 2013.

