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Abstract

Can machine learning (ML) be used to improve on exist-
ing cache replacement strategies? We propose a general
framework called LeCaR that uses the ML technique of
regret minimization to answer the question in the affirma-
tive. We show that the LeCaR framework outperforms
ARC using only two fundamental eviction policies, LRU
and LFU, by more than 18x when the cache size is small
relative to the size of the working set.

1 The Case for ML in Cache Management

Can machine learning (ML) be used to learn from
the best cache replacement policies? This question
was answered in the affirmative as far back as 2002
by the ACME system by Ari et al. [2], which assumes
that there exist a pool of multiple “experts” (i.e., strate-
gies). Each expert had an associated weight and the ex-
pert with the highest weight made the recommendation
for an item to be evicted on a miss. The weight of an
expert at any given time was a function of its recent
performance. ACME improved on the performance of
LRU and LFU. Since 2002, both cache replacement and
machine learning have seen major advances (e.g., adap-
tive replacement [3, 24]; regret minimization and online
learning [10,11,27]), suggesting a revisit of this question.

Can ML improve on existing cache replacement
strategies? In this paper we answer this question in
the affirmative. This is non-trivial given the diversity
of data sets for which ARC has been shown to perform
at or close to the best among its competitors. We iden-
tify one area where ARC may not have been adequately
put through its paces, i.e., when cache is much smaller
than the working set. Although ARC may outperform
other algorithms even for small cache sizes, when a “sta-
ble” working set does not fit in cache, it suffers a loss in
performance (referred to as the proverbial “ARChilles’
Heel” (sic) [29]), leaving room for further improvements.

Can we design “scalable” ML solutions for cache
replacement? Scalable solutions can maintain optimal
performance regardless of workloads. It has been shown
that working sets are telescoping in nature with larger
working sets fully containing one or more smaller work-
ing sets, motivating the utility of caches at various gran-
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ularities [20, 21]. Although a one-time correct sizing
of cache memory is not a trivial problem, it is possible
to provision sufficient cache memory relative to the en-
tire working set in order to maintain acceptable perfor-
mance. However, this may not be achievable because
(a) caches are expensive; (b) small caches are par for
the course (e.g., in mobile and IoT devices); (c) work-
loads are highly consolidated and dynamically change
over time, and it may be unaffordable to provision for
peak workloads; (d) it may be impossible to anticipate all
the possible workloads the system would have to face in
the near future; and (e) reprovisioning hardware caches
is either infeasible or not straightforward. Thus, we need
caching algorithms that scale well when workloads get
larger relative to cache sizes.

Figure 3 shows that our ML-based LeCaR (Learning
Cache Replacement) is competitive with ARC for rel-
atively large cache sizes, but is markedly superior to it
when cache sizes become smaller. Given the “online”
nature of the cache replacement problem, we use tech-
niques from the subarea of online learning with regret
minimization [5, 10, 11,23,27,31]. LeCaR outperforms
ARC by as much as 18x in hit rate across the 8 produc-
tion storage I/O workloads from FIU [26] when caches
are set to 0.1% of workload size and up to 30.5% when
caches are at 1% of workload size. For larger caches
LeCaR performs competitively relative to ARC.

2 Motivation

“Single gear” strategies are limited. The best-known
strategies for cache replacement are LRU and CLOCK
[9], both of which tend to retain pages with high recency,
and LFU, which retains pages based on how frequently
they have been referenced. These static strategies cannot
adapt to changes in workloads and fail to have good all-
round performance, especially when recent pages are not
frequently accessed or when pages are accessed a num-
ber of times and then lapse into long periods of infre-
quent access. In practice, LRU can evict frequently ac-
cessed pages, while LFU can evict fairly recent pages
while “hoarding” entries that were frequently accessed
in the distant past.

“Adapting” to the road. A common theme in most
improved algorithms is that they combine actions based



on recency and frequency. A spectrum of adaptive al-
gorithms combining the strengths of LRU, LFU, and/or
CLOCK have been proposed. These include LRFU
[22], DUELINGCLOCK [15], LRU-K [25], LIRS [17],
CLOCK-PRro [16], 2Q [19], and more. The best among
these were the two adaptive algorithms called Adap-
tive Replacement Cache (ARC) [24] and CLOCK with
Adaptive Replacement (CAR) [3]. The core idea behind
ARC and CAR was that they separated the recent pages
accessed only once from the frequent pages into two par-
titions of the cache, and used clues from a limited set of
history pages to decide the relative sizes of the partitions.
The two partitions were managed as FIFO queues and
eviction decisions were made using a complex set of de-
terministic conditions. An alternative view is that ARC
and CAR reduced eviction to a choice between LRU and
a version of LFU that does not differentiate between en-
tries that are accessed more than twice.

Driving down Machine Learning avenue. Theoreti-
cal research is limited in its ability to distinguish between
LRU and ARC (and CAR as well) [8]. Researchers con-
tinue to actively pursue ways to improve the algorithms.
A natural question is: can Machine Learning and related
predictive techniques help to improve cache replacement
algorithms. Predicting branchings [18] and time be-
fore re-referencing [13, 14] have been tried; other soft
computing techniques such as Neural Networks (NN),
genetic algorithms (GA), Classification and Regression
Trees (CART), Multivariate Adaptive Regression Splines
(MARS), Random Forest (RF) and TreeNet (TN) have
also been used for this problem [1, 7, 28, 30] with lim-
ited success. Adaptive caching with ML was attempted
[2,12] and they are known to outperform only the “static”
strategies, LRU and LFU. Also, they are expensive to
implement and were not pursued. The main goal here
was to overcome the cost of implementation while out-
performing more advanced algorithms developed since
that work.

Turning into “online learning” lane. An appropriate
model of machine learning for cache replacement is that
of Reinforcement online learning (RL), which require
that decisions be made online as requests arrive and that
cumulative regret (or reward) be optimized. Reinforce-
ment online learning constantly acquires new knowledge
and adapts to changes in input characteristics [11,23,31].
Cache replacement has been modeled as a Multi-Armed
Bandit (MAB) problem [6, 10] for highly specialized
caches, but has not been adequately evaluated in stan-
dard settings [4]. LeCaR explores online learning with
variants of MAB.

This brings us to the proposed ML-based algorithm
called LeCaR, which uses reinforcement online learning
with regret minimization. It is important to note that the
regret minimization approach allows room for theoretical

guarantees of performance to go with its performance in
practice. However, the theoretical framework is different
from a regular online learning method because the feed-
back about the quality of the decision made at any given
time is delayed and not instantaneous.

The high octane fuel. While the online learning pro-
vides the scaffold, the secret of success of the LeCaR
framework lies in “combining” two fundamental, yet or-
thogonal, policies — recency and frequency. Even though
LFU is much reviled and regularly puts up poor per-
formances in its pure form, its contribution (weight) as
managed by LeCaR is often very high, suggesting that
LFU is a blunt but powerful tool that needs a regular
infusion of cleanup best provided by the orthogonal re-
cency policy. LeCaR allows items with high frequency
to be efficiently evicted based on their recency. Surpris-
ingly, using LFU with decay instead of pure LFU low-
ers the efficacy of LeCaR. Furthermore, replacing LRU
with ARC also lowers the efficacy of LeCaR. One pos-
sible explanation is that both ARC and LFU with decay
tamper with pure LFU, destroying its orthogonality from
native LRU.

Our work also suggests that for every workload there
is some combination (i.e., a probability distribution) of
LRU and LFU that can handle it as well as any other
deterministic cache replacement scheme. ARC may be
combining recency and frequency in artful ways, but
does not have access to the full probability distribution
that our proposed LeCaR framework has.

3 Peeking under the hood of LeCaR

Unlike ACME, we do not assume that our system has
access to a set of best strategies (i.e., experts). Note that
simulating a collection of experts can be an expensive
proposition. Instead, LeCaR assumes that at every in-
stant, the workload is best handled by a judicious “mix”
(i.e., a probability distribution) of only two fundamental
policies: recency-based and frequency-based evictions.
Thus the goal of LeCaR is to “learn” the “optimal” prob-
ability distribution for every state of the system. Un-
like ACME, LeCaR maintains a probability distribution
of two policies instead of a probability distribution of a
panel of expert strategies. Surprisingly, this minimalist
approach to learning achieves outstanding results.
Another distinguishing feature of our system is that
the weight associated with the two policies is not a func-
tion of their current hit rate, but of the current associated
regret. Thus, we model cache replacement as an online
learning problem involving regret minimization [31]. To
handle any cache miss, one of the two policies is chosen
at random (probabilities derived from their associated cu-
mulative regret values due to the misses they “caused”).
In order to manage regret, the cache manages a FIFO



Algorithm 1: LeCaR(LRU,LFU)
Input: requested page g
if ¢ is in C then
\ C.UPDATEDATASTRUCTURE(g)
else

if ¢ is in Hyry then

| Hpru.DELETE(q)
else if ¢ is in Hypy then

| Hppy.DELETE(g)
UPDATEWEIGHT(gq, A, d)
if (Cache C is full) then
action = (LRU, LFU) w/ prob (wL,ru, WLFU)
if (action == LRU) then
if Hy ry is full then

| Hpru.DELETE(LRU(HyRryp))
Hyru.ADD(LRU(C))
C.DELETE(LRU(CO))
else
if HLFU is full then

‘ Hyry.DELETE(LRU(HLry))
Hyyy.ADD(LFU(C))
C.DELETE(LFU(C))
C.ADD(q)

history of metadata on the most recent evictions from
the cache. When an entry is evicted from the cache it
is moved to history. The number of entries in the his-
tory (as with ARC) is equal to the number of entries in
the cache. Each history entry is labeled by the policy
that evicted it from the cache. A decision is considered
“poor” if a request causes a miss and if the requested
page is found in history. The intent is that a miss found
in history could have been rectified by a more judicious
eviction, and hence the regret. Regret is graded and is
larger if it entered the history more recently. When poor
decisions are caused by a specific policy, that policy is
penalized by increasing the “regret” associated with it.
(See Algorithm 1.)

Algorithm 2: UPDATEWEIGHT(q, A ,d)
Input: page g, learning rate A, discount rate d
t := time spent by page ¢ in History
ri=d
if q isin HLRU then
‘ WLFU := WLFU xeM’ // increase WLFU
else if g is in Hypy then
‘ WLRU := WLRU *€**" // increase wiru
WLRU ‘= WLRU/(WLRU + WLFU) // normalize
wLFU := 1 —wLRU

Algorithm 2 calculates the weights. The weights start
off being equal, although they may be initialized using
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Figure 1: Switching between favorable sequences

some a priori information about the algorithms or the re-
quest sequence. When a “regrettable” miss is attributable
to LRU (resp. LFU), because it is found in history Hyry
(resp. Hrru), the weight of the “other” policy, i.e., LFU
(resp. LRU) is updated as recommended by regret min-
imization [5, 10,27,31]. Note that A is the learning rate
(initially 0.45), d is the discount rate (initially 0.005'/V,
where N is the cache size), and reward, r = d’. Perform-
ing a sensitivity analysis proves that the algorithm is ro-
bust to the learning rate and discount rate parameter and
we and chose ones that worked reasonably well across
the eight workloads we experimented with. Finally, the
algorithm returns the weight of LRU and LFU, which
are used to choose one of the two policies to apply prob-
abilistically for the next miss.

4 Evaluation

Here we present a series of experiments designed to ar-
gue the viability of the ML framework presented above.

Does LeCaR learn? How quickly? We start with
some simple experiments using synthetic data to estab-
lish LeCaR’s ability to learn. We synthetically generated
sequences that periodically switch back and forth from
being favorable to LRU to being favorable to LFU. Dur-
ing the phase when it is favorable to LRU, it generates
requests that deliberately cause a hit for LRU and a miss
for LFU, and vice versa. The generator also includes a
small amount (0.5%) of noise, i.e., requesting pages from
the universe that are neither in LRU nor in LFU’s cache.
For these data sets, size of the cache was set at 500 en-
tries, with a universe of pages of size 15 times the size of
the cache.

Figure 1 shows a plot that is broken into four equal
sections, each partitioned by blue vertical lines. Each
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Figure 2: Impact of phase change

partition corresponds to a sequence that is favorable to
one of LRU or LFU, as described above. The lower part
of the figure shows the hit rates with each of the four al-
gorithms under study. Hit rates for the four algorithms
are represented by curves in four different colors as in-
dicated. (Note that hit rates are computed over a sliding
window of size 500.) The upper part of the plot shows the
weights of LRU and LFU as LeCaR progresses through
the request sequence. Note that the hit rates of ARC
and LeCaR are very close to each other. The lower
plot shows how quickly ARC and LeCaR adapt to the
change. The learning for LeCaR is also reflected in fluc-
tuations in the weights wyry and wrgy. In additional ex-
periments, we show that the learning occurs even if there
are more partitions than 4, suggesting that the learning is
relatively robust to the frequency of these switches. After
experimenting with different learning rates A in LeCaR
for a variety of different workloads, we settled on a fixed
learning rate of 0.45 for all the experiments.

Does LeCaR adapt to phase changes? In real data
sets, phase changes are a frequent occurrence, where all
or part of the working set gets replaced. Our next set
of experiments study adaptiveness of the algorithms to
different levels of phase change. As above, we show only
one sample plot that explains the general behavior.

For these experiments, cache size was set at 50, with
a universe of 2000 pages. Working set size was set at
30, and on each phase change 90% of the working set
remained unchanged. Each phase had 5000 requests.

Figure 2 shows the results of the experiment. Again
lower plot shows hit rates and upper plot reflects the in-
ner workings of LeCaR with the weights of the two poli-
cies. Phase change causes a dip in the hit rate of all the
algorithms. There is not much difference in the rate at
which ARC and LeCaR recover, but LeCaR’s recov-
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Figure 3: LeCaR outperforms ARC and LRU at lower
cache sizes and is competitive at high cache sizes for
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fraction of the workload’s size. Y-axis: Cache hit rate.
Details in Sec. 4.

ery rate can be regulated with the learning rate (data not
shown).

The “road tests” with LeCaR. We used multi-day,
block-level, production storage I/O FIU Traces [26] for
our experiments. They include traces from an email
server (mail workload), a virtual machine running two
web servers (web-vm workload), and several user ma-
chines at the School of Computing and Information Sci-
ences at FIU, collected for a duration of three weeks.
The data sets labeled casa, ikki, madmax, topgun
are workloads from home directories; data set online
is from the server hosting the departments online course
management system; webresearch is a document store
for research projects; webusers is the home-pages of
faculty/staff/students; and mail is the department’s mail
server.

We discuss our findings with Day 3 (a Monday) of
each trace first. LeCaR outperforms ARC by as much
as 18x in hit rate across the 8 production workloads from
FIU [26] when caches are 0.1% of the workload size and
by -4% to 30.5% when caches are 1% of the workload
size. For larger caches LeCaR performs competitively
relative to ARC (within 0.33%). Figure 3 represents
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Figure 4: Using hoarding rates to explain performance
for madmax workload (day 3).

only 4 of the 8 traces; the remaining four were omit-
ted due to lack of space. Two observations are obvious.
When cache sizes are high (1%) relative to the size of the
workload, then all the top performers including LeCaR
perform more or less on par. When cache sizes are low
(£0.5%), LeCaR outperforms all the other competitors.

Similar characteristics were observed when we ran
longer experiments with data sets representing days 1
through 7 from the collection mentioned above (data not
shown). For most real data sets saturation of the hit rate
seems to happen somewhere between cache sizes of 1%
to 5% of the workload sizes.

Hoarding for better performance? In order to bet-
ter understand the behavior of LeCaR, we introduce the
concept of hoarding rate. It is defined as the percentage
of entries in cache that have been accessed at least twice
in the past since entering the cache, but is not among
the last 2N unique pages accessed. By definition, LRU
has zero hoarding rate because every page in the cache
(including those with frequency > 2) is among the last
N pages accessed. LFU tends to have high hoarding
rates because it cannot discard items with higher fre-
quency as long as there is at least one lower frequency
entry. LFU hoarding rate does not often decrease, ex-
cept when hoarded pages are requested. Algorithms like
ARC and LeCaR do selective hoarding, hedging their
bets that some of these pages are likely to be accessed in
the future. Our goal was to explain algorithm behavior
by observing their hoarding behavior. See Fig. 4; here
hoarding curves are smoothed by averaging over a slid-
ing window to avoid distractions of frequent fluctuations.

We discuss regions labeled A, B, C, and D in Figure

4. In A, LeCaR is hoarding more than the other al-
gorithms, but it is a relatively stable period where the
hoarding is paying off in terms of higher hit rates. In B,
LFU gets penalized because of prior poor choices (re-
flected by lowering of its weight), and LeCaR reacts by
applying more recency criteria, thus getting rid of much
of its hoarded pages. After an initial dip in hit rate, it re-
covers and tracks the performance of ARC, which uses
its own mechanisms to react to the situation in B, pos-
sibly by evicting items from its high frequency queue
(T). In C, some (frequent) pages are being requested af-
ter a long time, reflected by higher hit rate for LFU and a
dip in its hoarding (as with LeCaR and ARC). However,
the increase in weight for LFU pays off handsomely for
LeCaR, which sees the highest increase in performance
over its competition. D is similar to A in terms of the
stability of the weights, except that the higher hoarding
rates of all the algorithms is reflected in more similar hit
rates.

5 Discussion and Conclusions

Large caches do not benefit from strong replacement
strategies since working sets are already in cache; all
good strategies perform roughly equally with insignifi-
cant differences. When cache sizes are small, subtleties
of the replacement algorithms are observable. LeCaR
relies strongly on frequency, which is important to effec-
tive cache replacement. However it tempers its reliance
by using randomization and recency to clean up stale but
frequent items in the cache.

LeCaR manages two data structures of metadata for
each cache entry, i.e., recency and frequency. A naive
implementation of LeCaR will incur a space overhead
of 3x over ARC. A more careful implementation will
reduce this overhead to 2x. Futhermore, providing 2x
additional metadata space does not improve ARC per-
formance — on the contrary, for small cache sizes, doing
so unexpectedly hurts ARC’s performance. In conclu-
sion, the reinforcement online algorithm with regret min-
imization when applied in a novel way to pure LRU and
LFU policies results in high performance cache replace-
ment. LeCaR boasts up to 18x improvement over the
top competitor ARC for production storage 1/O traces
when caches are (1/1000)th of the workload size. In-
terestingly, the gap between LeCaR and ARC widens
when size of the cache (relative to workload) decreases,
suggesting that LeCaR is scalable to much larger work-
loads. We proposed hoarding rate as a means to under-
stand the relative behavioral properties of these caching
algorithms and to generate new insights into cache re-
placement analysis. The design of LeCaR is minimal-
ist and uses only two policies — the vanilla LRU and
LFU (without decay). If further improvements beyond



LeCaR are to be achieved, other orthogonal measures
must be identified.
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