
111

Machine Learning-based Adaptive Migration Algorithm for
Hybrid Storage Systems

MILAN SHETTI, Hewlett Packard Enterprise, USA

BINGZHE LI, University of Minnesota, Twin Cities, USA

DAVID DU, University of Minnesota, Twin Cities, USA

Hybrid storage systems are popular in most large-scale enterprise storage systems since they balance storage

performance, storage capacity and cost. The goal of such systems is to serve majority of the I/O requests

from high-performance devices and store less frequently used data in low-performance devices. A large data

migration volume between tiers can cause a huge overhead in practical hybrid storage systems. Therefore, how

to balance the trade-off between the migration cost and potential performance gain is a challenging and critical

issue in hybrid storage systems. In this paper, we focused on the data migration problem of hybrid storage

systems with two classes of storage devices. A machine learning based migration algorithm called K-Means

assisted Support Vector Machine (K-SVM) migration algorithm is proposed. This algorithm is capable of more

precisely classifying and efficiently migrating data between performance and capacity tiers. Moreover, this

K-SVM migration algorithm involves K-Means clustering algorithm to dynamically select a proper training

dataset such that the proposed algorithm can greatly reduce the volume of migrating data. Finally, the real

implementation results indicate that the ML-based algorithm reduces the migration data volume by about 40%

and achieves 70% lower latency compared to other algorithms.

CCS Concepts: • Information systems→ Hierarchical storage management.

Additional Key Words and Phrases: Hybrid storage, Machine learning, Migration, SVM

ACM Reference Format:
Milan Shetti, Bingzhe Li, and David Du. 2019. Machine Learning-based Adaptive Migration Algorithm for

Hybrid Storage Systems. ACM Trans. Storage 37, 4, Article 111 (August 2019), 26 pages. https://doi.org/10.1145/
1122445.1122456

1 INTRODUCTION
Unprecedented and ever increasing 3 V’s (Volume, Velocity and Variety) of data continues to put

pressure on storage systems to find cost-effective solutions capable of delivering peak performance

for all possible workloads [2, 3]. Recently, different types of emerging storage devices come out [35–

37, 39], which have different density and performance. For example, flash based Solid State Drives

(SSDs) can achievemuch faster random access performancewith low latency compared to traditional

Hard Disk Drives (HDDs) while HDDs are much cheaper than SSDs. Therefore, it is not cost effective

to build a petabyte byte (PB) storage system using only fast devices [1]. Compared with different

This work was partially supported by NSF I/UCRC Center Research in Intelligent Storage and the following NSF awards

1439662, 1525617, 1536447, 1708886, 1763008, and 1812537.

Authors’ addresses: Milan Shetti, Hewlett Packard Enterprise, Boston, USA, milan.shetti@hpe.com; Bingzhe Li, University of

Minnesota, Twin Cities, Minneapolis, USA, lixx1743@umn.edu; David Du, University of Minnesota, Twin Cities, Minneapolis,

USA, du@umn.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1553-3077/2019/8-ART111 $15.00

https://doi.org/10.1145/1122445.1122456

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

111:2 Shetti et al.

types of emerging devices, they can have 100x latency difference and more than 5x price difference.

These differences have motivated storage vendors to build two-level hybrid storage systems with

different types of storage devices.

A key characteristics of data that remains unchanged is that data has an access life cycle (i.e., not

all data are accessed at all times by applications). The desired outcome for a hybrid storage system is

to deliver almost all the IO operations from high performance tier (like SSDs). In order to achieve this

desired outcome, data have to be moved between tiers depending on the frequency of IO accesses

(a process referred as data migration). Although data migration between tiers introduces overheads,

given a 100x $/IOPS difference between SSDs and HDDs, this also presents an opportunity to

design and develop a migration algorithm which can be cost effective and can also deliver peak

performance as demanded by applications. Some previous studies have investigated hybrid storage

systems [4, 12, 16, 29, 40]. They formulated the characteristics of workloads and the properties of

devices based on statistical analysis. However, the migration optimization has the complexity of

NP-hard [40]. To avoid difficulty of solving the NP-hard problem, those researchers simplified the

problem and proposed polynomial time bound heuristic solutions. However, the simplified formulas

are not able to precisely express the behaviors of workloads. As a result, the mis-expression may

result in a large migration volume and decreasing the performance gain in a hybrid storage system.

Machine learning (ML) as a classifier has been successfully used in many applications [9, 11, 23, 31].

It can be a good candidate to solve the data migration problem with less migration volume and

higher performance gain. This is because the data migration in hybrid storage systems can be

regarded as a classification issue to determine/classify data to which storage tier they should be

resided.

In this paper, we focus on a hybrid storage system containing two types of storage devices

(SSD and HDD) and propose an K-Means assisted Support Vector Machine (K-SVM) migration

algorithm. In this algorithm, time is partitioned into periodical duration. In each period, the request

access patterns are collected. At the end of current period, an K-SVM classifier is used based on the

request access patterns of this period. Then, a classifier is used to determine which data should

be migrated to a different tier in the following period. To increase the precision of the classifier,

K-Means clustering algorithm is introduced to dynamically select a proper training dataset such

that the overall migration size can be reduced. Furthermore, we investigate the influence of different

system parameters on the performance of the migration algorithm including the time of periodical

duration, slice size, capacity ratio between SSD and HDD and available back-end bandwidth.

The contribution of this paper is threefold: I. This work introduces a machine learning (ML)

based migration algorithm for hybrid storage systems. The algorithm can greatly reduce the data

migration volume. As a result, the method achieves lower latency than other algorithms. II. The
selection algorithm of an adaptive training dataset using K-Means clustering improves the precision

of migration classification and thus further improves the performance of either the overall migration

size or the PT hit ratio. III. The effect of different system parameters of machine learning based

migration algorithm is thoroughly investigated. The investigation results can be used to design

and develop a more effective ML-based migration algorithm in different hybrid storage systems.

The structure of the paper is as follows. Section 2 gives a description of a basic SVM migration

algorithm and the other two baseline algorithms. The preliminary comparison results and the issues

of the basic SVM migration algorithm are provided in Section 3. Section 4 proposes an K-SVM

migration algorithm and the results compared to the two baseline algorithms. Section 5 investigates

the effects of different system parameters on the performance of migration algorithms. The results

of a real large scale implementation on a large cloud system are provided in Section 6 and related

work is introduced in Section 7. Finally, the conclusion and future work are described in Section 8.

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems 111:3

Table 1. Terms and notations used in this paper

PT Performance tier (default device is SSD)

CT capacity tier (default device is HDD)

C The capacity of the whole system

Slice the granularity of the unit for data migration

Ss indicates the slice size, the default value is 200MB

T The time intervals to measure request density

Access density The total number of IO accesses of one slice during the period T

Ns Ns : total number of slices in the system (Ns = C/Ss)

NPT , NCT NPT , NCT : numbers of slices in PT and CT

MPT ,MCT
The sets of migration candidates.

MPT : the set of candidates of PT → CT ;MCT : the set of CT → PT

Training dataset ratio Training dataset ratio is calculated by the size of training dataset divided by Ns .

rPT The ratio between PT capacity and the total capacity. (rPT = NPT /Ns)

PT hit ratio the number of requests in PT divided by the total number of requests.

BW
Available back-end bandwidth and is indicated by the number

of slices migrated in one period (# of slices/T)

2 BASIC SVMMIGRATION ALGORITHM
In this section, we introduce a basic support vector machine (SVM) migration algorithm and also

describe basic steps of classification and migration of this algorithm. After that, two baseline

algorithms, popularity-based and least recently used (LRU) algorithms, are introduced as well. The

terms and notations used in this paper are defined in Table 1.

2.1 Discussion between Hybrid Storage System and Caching System
First, in this subsection, we introduce the difference between the caching system and the hybrid

storage system. These two systems have their similarity which intend to store frequently access data

in fast devices and infrequently access data in slow devices. However, there are two fundamental

difference. One is that they have different behaviors. The caching systems have one or two operations

with one incoming request. If read/write cache hit happens, the request just reads/writes on the

fast devices. If there is a read/write cache miss, at first one element should be evicted from the

fast devices and written to the slow devices. Then, the new request is loaded/written to the fast

devices. Data may have two copies on slow and fast devices in the cache systems. The hybrid

storage systems basically just read/write requests on their target devices. Data only have one

copy. For each period, the data might be swapped between slow and fast devices according to the

migration algorithms. The second difference is how to collect information. The caching algorithm

collects the request information based on the minimum request unit (page or block) which is a small

granularity (KB). For a large scalded system (TB or PB level), the overhead of metadata from fast

devices is tremendous and unacceptable. Moreover, the caching algorithms only collect/update data

information which is located in the fast devices. For the hybrid storage systems, the monitoring

granularity is a parameter that can be adjusted based on the requirement of the system. Moreover,

the data information in both fast and slow devices are collected.

Moreover, we compared several caching algorithms (ARC [26], LeCaR [33], LRU and LFU) to

the proposed SVM scheme described in Section 2. As indicated in Table 2, the proposed scheme

achieves much better hit ratios for most of the traces. The reason is that the hybrid system schemes

monitor trace information on both PT and CT and thus can achieve better performance than caching

algorithms. Moreover, the write-back operation (element eviction to slow devices) is not considered

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

111:4 Shetti et al.

Table 2. Hit ratio comparisons between caching algorithms and the proposed scheme with 100GB PT capacity

ARC LeCaR LRU LFU K-SVM

prn_1 61.86% 61.86% 61.86% 61.86% 74.87%

proj_1 9.22% 8.00% 8.00% 9.22% 44.74%

usr_1 66.60% 64.76% 64.76% 66.60% 72.53%

usr_2 12.73% 11.07% 10.89% 12.73% 55.59%

src1_0 52.17% 49.91% 49.91% 61.67% 88.88%

web_2 74.97% 74.97% 74.98% 74.98% 92.41%

stg_1 6.80% 6.80% 6.80% 6.80% 70.10%

mds_1 5.05% 5.05% 5.05% 5.05% 17.81%

proj_3 72.07% 72.07% 72.07% 72.07% 56.94%

Fig. 1. Support Vector Machine (Theory of Operation)

for the caching algorithms, which makes the performance of caching algorithms even worse. To

make fair comparisons, in the following sections, we mainly focus on the algorithms for hybrid

storage systems.

2.2 Algorithm Description
SVM first proposed by Vapnik et al. [7] is a widely used supervised machine learning technique.

SVM became popular because of its success in the handwritten digit recognition use case. As shown

in Fig. 1, SVM is a two-class classifier based on the two vectors from the training dataset. It can

provide a hyperplane which maximizes the distance between two closest vectors in each of two

classes [15]. For the hybrid storage system, the maximum distance between two clusters can provide

more precise classification/prediction and thus improve the performance and reduce the migration

overhead.

In this work, we use SVM to categorize storage slices (slices are units of migration in hybrid stor-

age systems) into two groups based on the historical workload access patterns. After classification,

the slices will be migrated to a new location if its current location is mismatched with the SVM

classification. The proposed SVM algorithm introduced in this section for storage migration is called

a basic SVM migration algorithm (basic-SVM) in order to distinguish with the later introduced

K-SVM migration algorithm (K-SVM).

There are two major steps in the basic SVMmigration algorithm (training the basic SVM classifier,

and classifying and migrating).

Step I – Training: Algorithm 1 indicates the procedure of training. Assume a training dataset

(X ,Y) consisting of n points in the form of (X1,Y1) to (Xn,Yn), where Xi is the i
th

slice in the

training dataset and Yi is the label of the i
th

slice and can be either 1 (Performance Tier (PT)) or -1

(Capacity Tier (CT)) indicating the class which the ith slice belongs to.

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems 111:5

Algorithm 1 Basic SVM Migration Algorithm: training

Input: C , Ss , T
Output: Hyperplane-Z

1: procedure Training procedure

2: Ns ← C/Ss
3: Collecting access density of Ns slices in one T period

4: Sorting NPT and NCT slices based on the access density for PT and CT, respectively

5: Training dataset (X,Y) ← top x%×Ns/2 slices in PT + the least active x%×Ns/2 non-zero

slices based on the sorted access density. (default x% = 10%, so the size of training dataset is

x% × Ns)

6: Training linear SVM based on training dataset (X,Y) to obtain a hyperplane-Z: Z = AX +B

Fig. 2. The basic SVM migration algorithm.

For the training dataset, x% total slices are selected. For the basic SVM migration algorithm,

x% = 10% is set as the default value. For the later defined K-SVM algorithm, x will be adaptively

changed. As indicated in Algorithm 1, the training dataset of the basic SVM is selected from the

most active and the least active non-zero slices (slices with activities) of the performance and

capacity tiers respectively. In this way, it uses the most represented data to train the SVM.

The output Hyperplane-Z in Algorithm 1 is a classifier that distinguishes which storage type the

input slices should belong to as seen in Eq. 1.{
ith slice ← PT , if Hyperplane-Z(i) == 1

ith slice ← CT , otherwise

(1)

where Hyperplane-Z() function is obtained from Algorithm 1. i is the input slice number. PT means

performance tier. CT indicates capacity tier. Therefore, if the output of Hyperplane-Z function

with input i is 1, that means the ith slice should be located in PT. Otherwise, the ith slice should be

located in CT.

During each periodT , the system records the access density (the number of times being accessed)

of each slice. At the end of the period T , based on Algorithm 1 the training dataset is selected

and then the new hyperplane is re-defined. Finally, all migration candidates (storage slices) are

classified. The migrating process happens in the next period T + 1.
Step II – Classifying andMigrating: After getting Hyperplane-Z function from Algorithm 1, we

start to identify the migration candidates and do the migration in the next periodT + 1. Algorithm 2

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

111:6 Shetti et al.

Algorithm 2 Basic SVM Migration Algorithm: classifying and migrating

1: procedure Classifying procedure

2: while Xi ∈ PT slices do
3: if Hyperplane-Z(i) , Yi then
4: MPT ← MPT + Xi
5: i ← i + 1
6: while Xi ∈ CT slices do
7: if Hyperplane-Z(i) , Yi then
8: MCT ← MCT + Xi
9: i ← i + 1
10: end
11: procedureMigrating procedure

12: # of migration slices = min(len(MPT), len(MCT))

13: Ascending sortingMPT
14: Descending sortingMCT
15: for i ≤ # of migration slices do
16: Exchange slices ofMPT (i) andMCT (i)
17: Updating the labels of slices ofMPT (i) andMCT (i)

18: end

Algorithm 3 Popularity-based Migration Algorithm

Input: T
Output: Migration candidatesMPT ,MCT

1: Collecting access density of Ns slices in one T period

2: Reversely sorting NPT slices based on the access density for PT (Ni
PT indicates the ith element

in the sorted array)

3: Sorting NCT slices based on the access density for CT (Ni
CT indicates the ith element in the

sorted array)

4: i ← 0

5: while Ni
CT > Ni

PT do
6: MCT ← MCT + Ni

CT
7: MPT ← MPT + Ni

PT
8: i ← i + 1

indicates the procedures of the classifying and migrating. First, based on the Hyperplane-Z function,

for all slices in PT or CT, if the classification result of the ith slice is not equal to its original label Yi ,
then the ith slice is added into its corresponding migration candidate set (MPT orMCT). During the

migrating process, we first determine the number of migration slices by using the minimum number

between the sizes ofMPT andMCT . This is because some slices cannot be migrated/exchanged if

the numbers of slices inMPT andMCT are not the same. By ascending sortingMPT and descending

sortingMCT (Lines 13-17 in Algorithm 2), it promises that the most active slices in CT and the least

active slices in PT are migrated first. The final step is to update the labels of migrated slices and

those labels will be used for the next iteration period.

Figure 2 provides an example of the basic SVM migrating algorithm. According to Algorithm 1,

the hyperplane-Z is trained based on the x% most and least active non-zero slices in CT and PT

respectively. In Figure 2, after determining the hyperplane-Z, the migration candidates are classified

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems 111:7

Algorithm 4 HAT migration Algorithm

Input: T
Output: Migration candidatesMPT ,MCT

1: for each request (Reqi) in T do
2: Computing slice number (SReq) of the request (Reqi)
3: if SReq in LRU_Q then
4: PT_LRUQ ← PT_LRUQ + SReq

5: Put SReq in LRU_Q

6: for current slices (slicei) in PT do
7: if slicei is not at first NPT of PT_LRUQ then
8: MPT ← MPT + slicei
9: for current slices (slicei) in CT do
10: if slicei is at first NPT of PT_LRUQ then
11: MCT ← MCT + slicei

as shown in shaded red regions. Finally, those candidate slices will be scheduled to be migrated to

the region that they supposed to reside.

According to the above description, the basic-SVM algorithm helps classify the migration slices

which have similar or different features as the training dataset. The goals of the proposed migration

algorithm is to improve the performance (higher PT region hit ratio (SSD hit ratio)) or to reduce

total migration overhead (lower amount of migration data).

2.3 Baseline Algorithm I: Popularity-based Algorithm
One of the baseline algorithms is popularity-based algorithm which is very popular with solutions

from storage vendors. Some previous works [6][5] can be simplified to the popularity algorithm.

The algorithm is defined in Algorithm 3. At period T , the popularity-based algorithm first collects

the access density of each storage slice. Then, according to the access densities, the popularity-based

algorithm is to exchange the slice of the highest access density in CT region with the slice of the

lowest access density in PT region if the lowest value in PT region is smaller than the highest value

in CT region. The migration process will continue until the access densities of slices in PT region

are no longer smaller than the densities of any slices in CT region.

2.4 Baseline algorithm II: HAT Algorithm
The HAT algorithm [25] is a migration algorithm considering both frequency and recency. The

basic idea of HAT in hybrid storage system (two types of disks) is that there is an LRU queue to

record the recency of the historical data. The LRU queue size is the number of slices in PT region

(NPT). As shown in Algorithm 4, the slice at its first time access will be put into one LRU queue

(LRU_Q). If the slice is accessed again and it is also located in LRU_Q, the slice will be put in

PT_LRUQ. It means the slice is labeled as a PT region candidate. At the end of the algorithm, since

the PT region only has the size of (NPT), the first NPT slices in PT_LRUQ should be put into the PT

region. With comparing the locations of current slices, the migration slices will be put intoMCT
andMPT .

2.5 Baseline algorithm III: LRU Algorithm
Another baseline algorithm is the Least Recently Used algorithm (LRU) which is a popular policy

used in the eviction algorithm of memory cache. The LRU algorithm keeps the least recently

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

111:8 Shetti et al.

Table 3. Trace characteristics

of requests Total request size (GB) Trace length (h) Maximum offset (GB)

MSR Cambridge traces [27]

prn_1 1.04E+07 212.1 168 385.0

proj_1 1.47E+07 775.9 168 820.0

usr_1 3.63E+07 2135.4 168 820.0

usr_2 1.02E+07 441.8 168 530.0

src1_0 3.00E+07 1538.3 168 273.0

web_2 4.25E+06 263.6 168 169.0

stg_1 2.13E+06 85.5 168 101.7

mds_1 1.54E+06 88.7 168 474.0

proj_3 2.09E+06 20.9 168 220.0

Systor’17 traces [21]

LUN0 6.38E+07 1607.8 36 4737.2

LUN1 6.27E+07 1794.9 36 4418.6

LUN3 6.54E+07 1638.6 36 4016.5

accessed slices in a LRU queue for PT region and keeps the most recently accessed slices in the

MRU (most recently used) queue for CT region. After period T , the algorithm exchanges the slices

in LRU queue with the slices in MRU queue. The migration size of the LRU algorithm for each

period is proportional to the sizes of MRU and LRU queues. By default, we set the LRU and MRU

queue size to Ns ∗ 10%.

2.6 Baseline algorithm IV: ChewAnalyzer Algorithm
ChewAnalyzer algorithm [10] is another migration scheme for hybrid storage systems. The scheme

is based on a hierarchical classifier [28] to classify the access patterns of workloads. They used

different storage I/O workload characterization dimensions and the classifier analyze the access

patterns step by step. To make a fair comparison, we simplify the ChewAnalyzer to a two-tier

storage system. The first step is to classify the I/O density. Then, the second step is to distinguish

the read and write performance. Finally, the sequence/randomness of workloads is classified. The

high I/O intensive, write-intensive, and random workloads are assigned to PT (SSD) devices and

others are scheduled to CT (HDD) devices.

3 PERFORMANCE OF BASIC-SVM ALGORITHM
3.1 Trace Characteristics and System Configuration
In the performance comparison, we use two types of traces, MSR Cambridge traces [27] and

Systor’17 traces [21] to evaluate the performance of a hybrid system and migration overhead of

these three algorithms. The trace characteristics are summarized in Table 2. Two metrics are used

to indicate the performance of migration algorithms, PT hit ratio and total migration size. The PT

hit ratio is defined as the number of requests satisfied by the slices in PT region (SSD) divided by

the total number of requests. The total migration size indicates how much data have been migrated

between the two tiers. Therefore, a migration algorithm with a higher PT hit ratio and a smaller

migration size will be better than others.

At the beginning of running traces, we preconditioned the storage system by writing all the

slices responded to the first portion of the requests to PT region (SSD) until PT region is full. Then,

the rest of storage slices are written to CT region (HDD). This precondition is practically used by

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems 111:9

Fig. 3. PT hit ratio comparison between basic-SVM algorithm, popularity-based, HAT and LRU algorithms.

Fig. 4. Migration size comparison between basic SVM, SP, HAT and LRU migration algorithms. "0" indicates
there are no migration data.

industries to simply initialize a hybrid storage system. This preconditioning process is applied to

all algorithms and are used in all simulations and experiments in this paper.

3.2 Performance Comparisons
In this section, the performance comparisons between the basic-SVM algorithm, SP, HAT and LRU

are made. In the experiments, the system capacity is set to 500GB which contains 100GB SSD and

400GB HDD. The default slice size (Ss) is set to 200MB. Thus, there are total 2500 slices, 500 slices

in SSD and 2000 in HDD. For those traces having larger maximum offsets than 500GB (like LUN0,

LUN1 and LUN3), the offset is scaled into the range of 0-500GB, which is directly divided by a

constant value. For example, for those traces from Systor’17, the offsets of traces are divided by 10.

The configuration with scaling is equivalent to the configuration of 5TB total capacity and 2GB

slice size without scaling. For convenience of comparisons, the scaling is able to put the results

of all traces in the same figures. For the basic-SVM algorithm, the training dataset is set to 10%.

The size of the LRU queue is also set to 10%. The migration time interval (T) is 14 hours for MSR

Cambridge traces and 1 hour for Systor’17 traces. By doing that, the total number of requests perT
in each type of traces keeps similar.

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

111:10 Shetti et al.

Fig. 5. Relationship between the overall PT hit ratio and the training dataset ratio.

As shown in Figures 3 and 4, the LRU algorithm has the worst overall PT hit ratio. The reason

is that the LRU algorithm always migrates the least recently used slices and cannot reflect the

characteristics of workloads. Therefore, it causes much low PT hit ratio. The migration only happens

for each period. So, the LRU policy is capable of improving the cache hit ratio by immediately

replacing the most recent accessed data but is not good at in storage migration scheme. For the

other four algorithms, the overall PT hit ratio for most of traces are similar while the basic SVM

algorithm achieves much smaller overall migration size. This is because ChewAnalyzer, HAT and

Popularity based schemes use the constant schemes to determine the access patterns. Therefore,

they cannot dynamically follow the change of workloads and they achieve either lower PT ratio or

higher migration overhead than basic SVM scheme. However, there are three exceptions. For the

traces mds_1 and proj_3, the basic SVM migration algorithm only gets about 8% and 31% overall

PT hit ratio respectively. They are much smaller than the PT hit ratios of the popularity-based and

HAT algorithm (18% and 17% for mds_1, and 57% and 60% for proj_3). For trace src1_0, although

the basic-SVM, popularity-based and HAT algorithms achieve similar PT hit ratio, the basic-SVM

needs to transfer 5x and 3x larger migration size than the popularity-based and HAT algorithms.

According to these three exceptions, the issues of basic SVM migration algorithm are investigated

and discussed in the following subsection. After that, a new K-SVMmigration algorithm is proposed

for solving those issues in Section 4.

3.3 Issues of Basic-SVM Migration Algorithm
After investigating the three traces that the basic-SVM algorithm has worse performance than that

of popularity-based algorithm, we found that the issue is selecting improper training datasets. As

discussed in Section 3.2, the basic-SVM migration algorithm ended up with a larger migration size

for trace src1_0. The migration size is determined by the SVM hyperplane which is trained by a

selected training dataset. Thus, we first investigate the relationship between the overall migration

size and training dataset ratio under the system as configured and discussed in Section 3.2.

As shown in Figure 5, the overall trend of PT hit ratio keeps roughly flat with the increasing

training dataset ratio for all traces. However, in Figure 6 the overall migration sizes are changed

tremendously and irregularly for different traces with increasing training dataset ratio. The max-

imum migration size can reach more than 10X than the minimum migration size in Figure 6.

Therefore, the migration size is highly related to the training dataset ratio. Based on Figure 6 the

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems 111:11

Fig. 6. Relationship between the overall migration size and the training dataset ratio.

Fig. 7. Relationship between overall migration size and overall PT hit ratio for the SVM migration algorithm.

curves are so irregular and it seems hard to find a rule for picking up a proper training dataset ratio

for a specific trace.

Moreover, to find the relationship between migration size and PT hit ratio, we vary the training

dataset ratio to obtain different migration sizes for the basic-SVM migration algorithm. As shown

in Figure 7, the PT hit ratio is increased with the raising migration size at the beginning and then

the overall PT hit ratios become saturated. The goal of migrating data in a hybrid system is to

achieve a higher PT hit ratio while maintaining a small migration size. So, those so-called balanced
points in Figure 7 have good trade-offs between the migration size and the PT hit ratio. As for the

issue of large migration sizes for the basic SVM migration algorithm in Section 3.2, it is because the

result of the basic-SVM algorithm locates far away from the balanced point of src1_0 (at the right

side) in Figure 7. The reason of having a large migration size is caused by an improper training

dataset due to the constant training dataset ratio. For different traces, the request access patterns are

different and the same training dataset ratio is not a good choice. Moreover, even for the same trace,

at different iterations the request access patterns are changed and different. Therefore, training

dataset ratio directly affects the performance of a migration algorithm (the PT hit ratio and total

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

111:12 Shetti et al.

Algorithm 5 K-SVM Migration Algorithm: training

Input: C , Ss , T
Output: Hyperplane-Z

1: procedure Training procedure

2: Ns ← C/Ss
3: Collecting access density of Ns slices in one T period

4: Sorting all slices in PT

5: Remove top 0.2% slices

6: Do K-Means clustering for PT region (K=2).

7: Adding the removed top 0.2% slices to the cluster at the top position.

8: Do K-Means clustering for CT region (K=2).

9: Training dataset (X,Y) ← all slices at the top cluster of PT + all slices at the bottom cluster

of CT

10: Training linear SVM based on training dataset (X,Y) to obtain a hyperplane-Z: Z = B

migration size). A proper training dataset ratio is useful for solving the issue of large migration

sizes (investigated in Section 4.2).

In the following sections, we modify our proposed basic SVM migration algorithm to an K-SVM

algorithm which is able to solve the issues mentioned above. Additionally, the target of the K-SVM

algorithm is to get closer to the balanced point for each trace.

4 K-SVMMIGRATION ALGORITHM
In this section, a modified SVM migration algorithm called K-SVM migration algorithm (K-SVM)

is introduced to remedy the two issues of the basic SVM algorithm as discussed in Section 3.3.

4.1 Algorithm Description
The proposed K-SVM migration algorithm is shown in Algorithm 5. Compared to the basic-SVM

algorithm in Algorithm 1, the main differences are the training dataset selecting (Lines 4-8 in

Algorithm 5).

To remedy the improper training dataset issue, the basic idea is to include the most representative

slices as many as possible into training dataset for SVM. For example, we want to include most

of the relatively highly accessed slices in the training dataset of PT region. By doing that, those

relatively high accessed slices can effectively represent the feature of PT region. Additionally, those

slices in the training dataset will not be migrated due to the feature of SVM and thus it potentially

reduces the migration size. Similarly, the training datasets should also exclude the slices which

cannot represent the feature of the region. Therefore, by replacing a constant training dataset ratio,

we use the K-Means clustering algorithm [17] to group the similar slices in PT and CT regions,

respectively (K=2 used in this paper). The K-Means clustering algorithm is used for PT and CT

regions respectively with one dimension input (access density).

In some cases, one or two slices located in PT region have really high access frequencies than

others. However, we do not want to only use one or two points to represent the PT region. Therefore,

to overcome those outliers, we force the top cluster containing at least 0.2% slices as shown in Lines

4-7 in Algorithm 5. Therefore, by using the modified K-Means clustering algorithm, the training

dataset is adaptively selected by the algorithm itself. As a result, compared to other algorithms the

K-SVM algorithm achieves smaller migration sizes and higher PT hit ratios in Section 4.2.

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems 111:13

Fig. 8. Training dataset ratios of first eleven iterations for the K-SVM algorithm.

Fig. 9. The PT hit ratio comparisons between K-SVM and other algorithms.

4.2 K-SVM Results
To find how well the K-SVM algorithm is applied to the data migration problem of hybrid storage

systems, we compare the performance of K-SVM algorithmwith that of basic SVM, popularity-based,

HAT and the performance of balanced points (discussed in Section 3.2). The system configurations

are set to the same as the configuration in Section 3.2.

Training dataset ratios of the K-SVM algorithm for different iterations are observed. As shown

in Figure 8, the K-SVM is capable of dynamically selecting training datasets based on the request

access patterns. The performance and overhead comparisons are shown in Figure 9 and Figure 10

respectively. Among all algorithms, the LRU algorithm has the worst overall PT hit ratio. This is

because the LRU algorithm always migrates the least recently used slices and cannot reflect the

characteristics of workloads. Therefore, it causes much low PT hit ratio. The migration only happens

for each period. So, the LRU policy is capable of improving the cache hit ratio by immediately

replacing the most recent accessed data but is not good at in storage migration scheme. In the future

experiment comparisons, we do not compare the LRU algorithm by varying system parameters.

The K-SVM achieves similar or a little lower PT hit ratios as the balanced points. For the migration

size, the balanced point results always have the lowest values among most of traces. For traces

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

111:14 Shetti et al.

Fig. 10. The migration size comparisons between K-SVM and other algorithms.

proj_1 and usr_1, the balanced point has larger migration sizes, but higher PT hit ratios than the

proposed K-SVM algorithm. For the rest of traces, the newly proposed K-SVM algorithm achieves

close migration sizes to the balanced points and obtains much smaller migration sizes compared to

the basic-SVM, popularity-based, LRU, HAT and ChewAnalyzer algorithms.

In summary, although for some traces, K-SVM algorithm has slightly larger migration sizes

compared with the results of balanced points, it remedies the issues described in Section 3.3.

Moreover, the reduction of the migration size is significant for all traces (2x - 8x on average).

Therefore, the K-SVM migration algorithm effectively selects a proper training dataset for the SVM

classifier and gains very close solutions to the balanced points which have the smallest migration

size and the highest PT hit ratio.

4.3 K-SVM Overhead Discussion
The overhead of the K-SVM scheme mainly comes from two aspects. One is the metadata overhead

of recording collected trace information. The second one is the computation overhead of machine

learning algorithms. Assume the total capacity of PT and CT tiers are 500 GB (PT: 100GB and CT:

400GB). The slice size is 200MB. The metadata information only has about 16KB. Compared to the

total 500GB capacity, the metadata overhead will have little influence on the systems. For the other

overhead, we investigate the execution time of training process. As seen in Table 4, the training

time is varied from 3.06ms to 211.79ms as varying the slice size. Compared to the period T (hours),

the training time of the K-SVM scheme is acceptable.

Table 4. Training time of the K-SVM scheme with varying slice size

slice size (MB) 50 100 200 500 1000

Training time (ms) 211.79 56.76 16.98 5.45 3.06

5 EFFECT OF DIFFERENT PARAMETERS
After introducing the K-SVM algorithm and comparing it with other algorithms, we investigate the

influence of various system parameters on the performance and overhead of these algorithms. The

studied parameters include slice size (Ss), capacity ratio between SSD and the total capacity (rPT),
time interval (T) and available network/system bandwidth (BW). In the following subsections, we

vary those parameters to investigate their relationships with the performance.

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems 111:15

(a) K-SVM (b) Popularity-based

(c) HAT (d) ChewAnalyzer

Fig. 11. The PT hit ratio with varying slice size.

5.1 Slice size
To investigate the effect of variable slice sizes on the PT hit ratio and total migration size, we make

the other parameters fixed. The time intervals are set to one hour for the Systor’17 traces and 14

hours for the MSR traces. rPT is set to 0.2 which is a typical ratio used in enterprise storage systems.

The slice size is varied from 50MB to 1GB.

Figures 11 and 12 indicate the trends of PT hit ratio and total migration sizes for different

migration algorithms with varying slice sizes respectively. Compared with the popularity-based,

HAT and ChewAnalyzer algorithms, the K-SVM migration algorithm achieves similar PT hit ratios

(better PT ratios than ChewAnalyzer) while obtains much smaller migration sizes. Compared

between popularity-based, HAT and ChewAnalyzer algorithms, they achieve similar migration

sizes and PT hit ratios in general. The ChewAnalyzer has much better performance on the LUN0,

LUN1 and LUN3 traces with larger slice sizes and the HAT and Popularity-based schemes are better

on smaller slice sizes in terms of migration size. The reason is that due to non-adaptive property,

those three algorithms might be suitable for some specific access patterns and thus achieve much

better performance for those access patterns.

Based on the performance results, we can categorize the traces into two groups. One group is that

the PT hit ratio increases with the increase of slice size including traces, stg_1, mds_1 and proj_3.

The traces in this group (in Table 3) have a typical feature which has a relatively small number of

accesses for each slice. The small number of requests per slice causes a large variation during each

period of time. As a result, the algorithms cannot precisely classify the characteristics of the traces.

Thus, when increasing the slice size, the number of requests per slice is increased and then the

algorithms can more precisely migrate the slices. Therefore, with increasing the slice size, the PT

hit ratios of those traces increase as well. For the rest of the traces in the other group, they have

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

111:16 Shetti et al.

(a) K-SVM (b) Popularity-based

(c) HAT (d) ChewAnalyzer

Fig. 12. The migration size with varying slice size.

sufficient accesses in each slice. Therefore, the small slice sizes have the fine-granularity migration

which helps increase the PT hit ratio. Moreover, with the increasing slice size, the migration size is

also increased.

5.2 Space Capacity Ratio between PT and CT
In this subsection, we investigate the effect of different device capacity ratios. We keep the configu-

ration the same as the previous subsection with the slice size as 200MB.

As seen in Figures 13 and 14, the PT hit ratios are increased with the increased PT capacity (SSD

capacity). The K-SVM, popularity-based, HAT and ChewAnalyzer algorithms achieve similar PT hit

ratios. For the migration size, our proposed K-SVM migration algorithm achieves about on average

32X smaller migration size when compared to the popularity-based, HAT and ChewAnalyzer

algorithms.

Moreover, we investigate the influence of PT capacity ratio on the migration size for each

algorithm. For the popularity-based, HAT and ChewAnalyzer algorithms, they achieve similar

trend of migration size, which is that the migration size first goes up and reaches to the peak

values when rPT is about 0.35 for Popularity based and about 0.4 for HAT and ChewAnalyzer.

Then, the migration size deceases with the increased SSD (PT region) capacity. This is because

at the around middle points, the numbers of migration candidates for PT and CT slices become

similar and thus the migration size reaches the peak values. Before or after the middle points,

either the number of PT candidates or the number of CT candidates is reduced. The mis-matched

number of candidates results in a smaller migration size. With increased PT capacity, the K-SVM

algorithm migrates less amount of data. This is because a larger PT space can store more data and

thus the number of migration candidates becomes less. The K-SVM algorithm efficiently selects the

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems 111:17

(a) K-SVM (b) Popularity-based

(c) HAT (d) ChewAnalyzer

Fig. 13. The PT hit ratio with varying SSD (PT region) capacity.

migration candidates and keeps the migration size small while maintaining similar PT hit ratios as

other algorithms.

5.3 Time Interval T
We use some traces in Systor’17 and MSR to investigate the influence of the time interval T . In the

Systor’17 traces the time interval T is varied from 0.5 to 4 hours. For MSR traces, the time interval

T is varied from 3.5 to 56 hours which approximately matches the total number of requests in one

time interval in the Systor’17 traces.

As shown in Figures 15 and 16, for the overall PT hit ratio, K-SVM, popularity-based, HAT and

ChewAnalyzer algorithms are not sensitive to the time interval T and obtain almost the same PT

hit ratios for Systor’17 traces with different time intervals. This is because the Systor’17 traces

have similar access patterns with different time intervals. Thus the time interval does not have

much effect on the PT hit ratio. Since a shorter time interval T means more times for classification

and migration in the whole duration (36 hours), the migration sizes are increased with decreasing

time interval T . Moreover, as seen in Figure 16a, there are obvious gaps between K-SVM and other

algorithms. Thus, the K-SVM gets much less migration sizes than the popularity-based, HAT and

ChewAnalyzer algorithms. In general, the overall migration size is decreased as increasing T since

largerT results in less times of classifications/migrations. As a result, the total amount of migration

overhead is reduced. For Systor’17 traces, the migration size has about 7- 9x difference between the

smallest and the largest T . For MSR traces, the migration size has about 4 - 24x difference between

the smallest and the largest T .
For the MSR traces, the usr_2 trace is sensitive to the time interval T sine the PT ratio variance

can reach to about 25% for all those schemes. For the other two traces, they have flat trend with

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

111:18 Shetti et al.

(a) K-SVM (b) Popularity-based

(c) HAT (d) ChewAnalyzer

Fig. 14. The migration size with varying SSD (PT region) capacity.

increasing T . The three algorithms achieve similar PT hit ratio except for the usr_2 at T = 42 with

the K-SVM. The reason is that when T = 42 the total number of period is only 3 and the K-SVM

might not be converged to a stable condition. Compared with the migration size, the conclusion is

the same as the Systor’17 traces, the K-SVM algorithm always achieves smaller migration sizes

than the popularity-based, HAT and ChewAnalyzer algorithms. On average, the K-SVM scheme

obtains 4.22x, 6.14x and 3.49x less migration size than Popularity-based, HAT and ChewAnalyzer

schemes, respectively.

5.4 Available Back-end Bandwidth
In a real environment, the applications with a high data access rate consume lots of available

bandwidth. Therefore, due to limited available bandwidth, the system may not finish all migration

classified by a migration algorithm. In this subsection, we investigate the available back-end

bandwidth influence on the performance and overhead for different algorithms. The available

back-end bandwidth can be regarded as the limited migration sizes in the system. The system

configuration keeps the same as discussed in Section 5.1.

As seen in Figures 17 and 18, with very small available BW , the three algorithms have the

same migration size. Also, three algorithms have similar PT hit ratio. This is because the K-SVM,

popularity-based, HAT and ChewAnalyzer algorithms can always classify those candidates which

are highly accessed in CT and less accessed slices in PT regions. Thus, with small available BW they

only migrate those "obvious" migration candidates and obtain the same performance and overhead.

With increasing BW , the K-SVM, popularity-based, HAT and ChewAnalyzer algorithms start to

classify different migration candidates and result in different PT hit ratios and migration sizes. As

seen in Figure 18, the migration sizes of the popularity-based, HAT and ChewAnalyzer algorithms

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems 111:19

(a) Systor: K-SVM (b) Systor: Popularity-based (c) Systor: HAT

(d) Systor: ChewAnalyzer (e) MSR: K-SVM (f) MSR: Popularity-based

(g) MSR: HAT (h) MSR: ChewAnalyzer

Fig. 15. PT hit ratio with varying the time interval T .

(a) Systor’17 (b) MSR

Fig. 16. The migration size with varying the time interval T .

are tremendously increased. On the other hand the migration size of our proposed K-SVM only

slightly increases while maintaining a similar PT hit ratio as the popularity-based algorithm. In

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

111:20 Shetti et al.

Fig. 17. The PT hit ratio with varying available back-end bandwidth.

Fig. 18. The migration size with varying available back-end bandwidth.

Fig. 19. Comparison between K-SVM and the SVM scheme with two factors.

summary, the lower available bandwidth causes a lower PT hit ratio for the K-SVM and popularity-

based algorithms. With increasing available bandwidth, the K-SVM increases the PT hit ratios with

only slightly increased total migration size.

5.5 Discussion of Different Design Factors
For block storage systems, limited information can be captured in the block layer including request

size, I/O timestamp, write/read, and offset. The timestamp can be interpreted by the access density

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems 111:21

Fig. 20. The PT hit ratio comparison with K-SVM. SVM-2D and LRU algorithms.

Fig. 21. The migration size comparison with K-SVM. SVM-2D and LRU algorithms.

which is used as one factor for the proposed scheme. For the issue presented in this paper, no

matter read and write requests we always want to put highly frequently accessed data in the fast

devices. So, we do not need to distinguish read and write in this work. The logical offset is used to

compute the slice number in this work. The request size might have an influence on the overall

performance. To investigate the influence of the request size, we make a comparison between one

factor SVM (access density only) and two factor SVM (access density and request size). As shown

in Figure 19, the K-SVM obtains much higher PT hit ratios than the SVM with two factors (18%

higher on average). The K-SVM scheme achieves a little higher migration size for some traces. It

means that the K-SVM can correctly migrate slices to achieve better hit ratios than the SVM with

two factors. The reason is that the system uses the slice size with a larger value (hundred MBs to

GBs) and thus the access density on the slice becomes more important than the request size. So,

the K-SVM without considering the request size will achieve better high ratios than the SVM with

two factors.

5.6 Effect on Frequency and Recency
In this subsection, we investigate the effect of frequency and recency on the performance of

migration algorithm. Three algorithms are compared. The K-SVM algorithm considers the frequency.

The LRU algorithm involves the recency. Based on the K-SVM algorithm, we extend the K-SVM

with considering both frequency and recency, called SVM-2D. The basic idea of SVM-2D is similar

to the K-SVM, which changes the x-axis to recency in Figure 2.

The results are shown in Figure 20 and Figure 21. According to the results, we can conclude that

the LRU algorithm as discussed before has worst migration performance on both PT hit ratio and

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

111:22 Shetti et al.

Table 5. List of applications used on the single hybrid storage system test bed

Tenant Application

A Oracle, SAP, VMware

B Home Directory

C High Performance Computing

D Virtual Desktop (VDI), Hyper V

E SharePoint, Web Farm

migration size. Since the migration size is proportional to the number of periods as mentioned in

Section 2, the LRU algorithm keeps the same amount of migration sizes for the MSR and Systor’17

traces. For the PT hit ratio, the LRU algorithm always migrates the least recently used slices and

cannot reflect the characteristics of workloads. Therefore, it causes much lower PT hit ratios than

the other two algorithms.

Comparing the K-SVM and SVM-2D, the results can be roughly categorized to three groups. For

the first group, the K-SVM achieves similar PT hit ratio but much less migration sizes than that

of SVM-2D algorithm among most of traces. The reason is that the recency degrades the impact

of frequency on the classification. Thus, some un-necessary slices are migrated. For the second

group, the K-SVM has higher or lower PT hit ratio and also obtains larger or smaller migration

size than SVM-2D. As mentioned in Section 4.2, there is the trade-off between migration size and

PT hit ratio and our K-SVM is much close to the "balanced points". For the third group, SVM-2D

achieves similar PT hit ratios but smaller migration sizes than the K-SVM for traces src1_0, web_2

and LUN3. In these three traces, the access patterns might not be regular and make the K-SVM

migrating larger size of slices. However, the SVM-2D with considering the recency mitigate the

effect of irregular access patterns.

In summary, the K-SVM mostly achieves the best performance compared to SVM-2D and LRU

algorithms. The analysis of the migration algorithms is that for the migration algorithms in the

storage systems, unlike the cache policy, themigration and replacement do not happens immediately.

The long period time can accumulate enough information to predict future access patterns and so

the recency becomes not so important as the frequency.

6 A REAL SYSTEM IMPLEMENTATION
The prototype of our proposed SVM and popularity-based algorithms are applied to a real enterprise

hybrid system. We compared popularity-based and SVM algorithms since based on all previous

discussions the popularity-based algorithm performs much similar with the HAT algorithm. The

experiments were conducted first on the traces gathered from a live system with multi-tenant 26

different applications running at an enterprise lab system for 31 days. The application list is shown

in Table 5. The total storage capacity in the test environment for Hybrid Storage System used was

1 PB with 100TB in SSD and 900TB in HDD.

The tests were performed with 47% storage consumed and at the end of the 15 days period and

the total capacity used by the system was 49%. Four metrics are considered 1) the average latency as

experienced by the host before migration (pre-migration); 2) latency spikes when data is actually

migrated (peak-migration); 3) the average latency as experienced by the hosts after migration

(post-migration); and 4) Migration size.
As seen in Figure 22, the system with the popularity-based algorithm moves about 0.95TB data

per day and the system with the SVM algorithm only moves about 0.68TB data per day on average.

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems 111:23

Fig. 22. Migration size comparison between SVM and popularity-based algorithms

(a) SVM

(b) Popularity-based

Fig. 23. Latency impact (prior, during and post migration)

Thus, the SVM algorithm achieves about 40% data migration reduction compared to the popularity-

based algorithm. For the average latency in Figure 23, both algorithms are able to reduce the latency

of the overall system after migrating. On average, the latency of the system with the SVM algorithm

drops from 4.5ms to 2.7ms. While, the system with the SVM algorithm only achieves the drop

from 6.4ms to 5.25ms. The SVM algorithm reduces the average latency about 70% compared to the

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

111:24 Shetti et al.

Fig. 24. Performance improvement andmigration sizes with various storage capacities for SVM and popularity-
based. (the sizes of bubbles indicate the migration size)

popularity-based algorithm. Moreover, the transient spikes in the popularity-based algorithm are

as high as 27% on average, which is much larger than the spikes in the SVM algorithm (only 9.1%).

Additionally, we examined the impact of the storage capacity on both popularity-based and SVM

algorithms. As shown in Figure 24, the SVM algorithm achieve a higher performance improvement

at all different available capacities than the popularity-based algorithm. Meanwhile, the SVM

achieves less migration size than the popularity-based algorithm as well.

7 RELATEDWORK
A hybrid storage system combining SSDs and HDDs has the advantages of cost effectiveness, higher

performance and longer endurance. Thus, it has gaining popularity and attracting research interests

since the beginning of this decade [20, 24, 32]. With the advent of flash memory based SSDs now

and Non-Volatile Memory (NVM) in the near future, research on caching and tiering algorithms to

improve and deliver Quality of Service (QoS) of storage systems has been extensively conducted as

well [8, 13, 18, 19, 22, 34, 38].

The data tiering management normally can be classified into two categories: file-level and block-

level. For the file-level migration, the storage manager has the information about application files

and thus it can precisely migrate data based on the characteristics of applications [14, 30, 40].

However, compared to the block-level migration, the file-level migration is less efficient and has

a larger migration overhead due to its migration granularity and the migration decision to be

done by file manager. For block-level migration, Guerra et al. [12] proposed the Extent-based

Dynamic Tiering (EDT) tool that contains two components: a configuration adviser (EDT-CA) and

a dynamic tier management (EDT-DTM). The EDT-CA determines the extent placement based on a

fixed utility function. The EDT-DTM manages the extent placement and migration via monitoring

active workloads. ExaPlan [16] achieves a low mean response time by using a queuing model.

HybridStore [20] provides a cost-efficient storage configuration for specific workloads and is able to

reduce the response time for the random-write dominant workloads. These studies have two major

difference with our work. One is that they used simple heuristic methods to solve the migration

problem. The other one is that they focus on three or more types of devices and also consider the

prices of devices. In this paper, we exploit the possibility of using machine learning approaches.

8 CONCLUSION AND FUTUREWORK
By applying known machine learning approaches to storage domain, an entire new set of tools

can be applied to solve data tiering problems. In this paper, we propose a migration algorithm

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

Machine Learning-based Adaptive Migration Algorithm for Hybrid Storage Systems 111:25

based on Support Vector Machine (SVM) and demonstrate the effectiveness of this algorithm

to solve an optimization problem in enterprise storage domain. Moreover, the proposed K-SVM

migration algorithm involves K-Means clustering to dynamically select a proper training dataset.

The proposed algorithm can tremendously reduce the size of migration data. Finally, the results of

a real implementation indicate that the ML-based algorithm reduces the volume of migration data

by about 40% and achieves 70% lower latency compared to other algorithms.

In future work, we plan to extend the system with two tiers to multiple tiers. Thus, the classifica-

tion issue will be changed to a multi-class classification problem and the tiering problem becomes

more complicated. Therefore, we plan to explore other AI and machine learning approaches like

neural networks which may produce better results than SVM.

REFERENCES
[1] [n. d.]. SNIA Solid State Storage: The Key to the Next Gen Solid State Storage Technologies. http://www.snia.org/sites/

default/files/AnilVasudeva_Solid_State_Storage_Key_NextGen.pdf.

[2] 2007. Storage Performance Council(University of Massa-chusetts trace repository). http://traces.cs.umass.edu/index.

php/Storage.

[3] I. Ahmad. 2007. Easy and Efficient Disk I/O Workload Characterization in VMware ESX Server. In 2007 IEEE 10th
International Symposium on Workload Characterization. 149–158. https://doi.org/10.1109/IISWC.2007.4362191

[4] Eric Anderson, Susan Spence, Ram Swaminathan, Mahesh Kallahalla, and Qian Wang. 2005. Quickly finding near-

optimal storage designs. ACM Transactions on Computer Systems (TOCS) 23, 4 (2005), 337–374.
[5] Mustafa Canim, George A Mihaila, Bishwaranjan Bhattacharjee, Kenneth A Ross, and Christian A Lang. 2010. SSD

bufferpool extensions for database systems. Proceedings of the VLDB Endowment 3, 1-2 (2010), 1435–1446.
[6] Feng Chen, David A Koufaty, and Xiaodong Zhang. 2011. Hystor: making the best use of solid state drives in high

performance storage systems. In Proceedings of the international conference on Supercomputing. ACM, 22–32.

[7] Corinna Cortes and Vladimir Vapnik. 1995. Support-vector networks. Machine learning 20, 3 (1995), 273–297.

[8] A Elnably and P Varman. 2012. Application-sensitive qos scheduling in storage servers. In ACM Symposium on
Parallelism in Algorithms and Architecture.

[9] Terrence S Furey, Nello Cristianini, Nigel Duffy, David W Bednarski, Michel Schummer, and David Haussler. 2000.

Support vector machine classification and validation of cancer tissue samples using microarray expression data.

Bioinformatics 16, 10 (2000), 906–914.
[10] Xiongzi Ge, Xuchao Xie, David HC Du, Pradeep Ganesan, and Dennis Hahn. 2018. ChewAnalyzer: Workload-Aware

Data Management Across Differentiated Storage Pools. In 2018 IEEE 26th International Symposium onModeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS). IEEE, 94–101.

[11] Ross Girshick. 2015. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision. 1440–1448.
[12] Jorge Guerra, Himabindu Pucha, Joseph S Glider, Wendy Belluomini, and Raju Rangaswami. 2011. Cost Effective

Storage using Extent Based Dynamic Tiering.. In FAST, Vol. 11. 20–20.
[13] Ajay Gulati, Arif Merchant, and Peter J Varman. 2007. pClock: an arrival curve based approach for QoS guarantees in

shared storage systems. In ACM SIGMETRICS Performance Evaluation Review, Vol. 35. ACM, 13–24.

[14] Dingshan He, Xianbo Zhang, David HC Du, and Gary Grider. 2006. Coordinating parallel hierarchical storage

management in object-base cluster file systems. In Proceedings of the 23rd IEEE Conference on Mass Storage Systems and
Technologies (MSST).

[15] Chih-Wei Hsu, Chih-Chung Chang, Chih-Jen Lin, et al. 2003. A practical guide to support vector classification. (2003).

[16] Ilias Iliadis, Jens Jelitto, Yusik Kim, Slavisa Sarafijanovic, and Vinodh Venkatesan. 2017. ExaPlan: Efficient Queueing-

Based Data Placement, Provisioning, and Load Balancing for Large Tiered Storage Systems. ACM Transactions on
Storage (TOS) 13, 2 (2017), 17.

[17] Anil K Jain. 2010. Data clustering: 50 years beyond K-means. Pattern recognition letters 31, 8 (2010), 651–666.
[18] Magnus Karlsson, Christos Karamanolis, and Xiaoyun Zhu. 2005. Triage: Performance differentiation for storage

systems using adaptive control. ACM Transactions on Storage (TOS) 1, 4 (2005), 457–480.
[19] Hyojun Kim, Sangeetha Seshadri, Clement L Dickey, and Lawrence Chiu. 2014. Evaluating phase change memory for

enterprise storage systems: A study of caching and tiering approaches. ACM Transactions on Storage (TOS) 10, 4 (2014),
15.

[20] Youngjae Kim, Aayush Gupta, Bhuvan Urgaonkar, Piotr Berman, and Anand Sivasubramaniam. 2011. HybridStore: A

cost-efficient, high-performance storage system combining SSDs and HDDs. In Modeling, Analysis & Simulation of
Computer and Telecommunication Systems (MASCOTS), 2011 IEEE 19th International Symposium on. IEEE, 227–236.

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

http://www.snia.org/sites/default/files/AnilVasudeva_Solid_State_Storage_Key_NextGen.pdf
http://www.snia.org/sites/default/files/AnilVasudeva_Solid_State_Storage_Key_NextGen.pdf
http://traces.cs.umass.edu/index.php/Storage
http://traces.cs.umass.edu/index.php/Storage
https://doi.org/10.1109/IISWC.2007.4362191

111:26 Shetti et al.

[21] Chunghan Lee, Tatsuo Kumano, Tatsuma Matsuki, Hiroshi Endo, Naoto Fukumoto, and Mariko Sugawara. 2017.

Understanding storage traffic characteristics on enterprise virtual desktop infrastructure. In Proceedings of the 10th
ACM International Systems and Storage Conference. ACM, 13.

[22] Bingzhe Li, Chunhua Deng, Jinfeng Yang, David Lilja, Bo Yuan, and David Du. 2019. HAML-SSD: A Hardware

Accelerated Hotness-Aware Machine Learning based SSD Management. In 2019 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 1–8.

[23] Bingzhe Li, Yaobin Qin, Bo Yuan, and David J Lilja. 2017. Neural Network Classifiers Using Stochastic Computing

with a Hardware-Oriented Approximate Activation Function. In 2017 IEEE 35th International Conference on Computer
Design (ICCD). IEEE, 97–104.

[24] Zhichao Li. 2014. GreenDM: A versatile tiering hybrid drive for the trade-off evaluation of performance, energy, and
endurance. Ph.D. Dissertation. The Graduate School, Stony Brook University: Stony Brook, NY.

[25] Yanfei Lv, Bin Cui, Xuexuan Chen, and Jing Li. 2014. HAT: an efficient buffer management method for flash-based

hybrid storage systems. Frontiers of Computer Science 8, 3 (2014), 440–455.
[26] Nimrod Megiddo and Dharmendra S Modha. 2003. ARC: A Self-Tuning, Low Overhead Replacement Cache.. In FAST,

Vol. 3. 115–130.

[27] Dushyanth Narayanan, Austin Donnelly, and Antony Rowstron. 2008. Write off-loading: Practical power management

for enterprise storage. ACM Transactions on Storage (TOS) 4, 3 (2008), 10.
[28] Ishwar Krishnan Sethi and GPR Sarvarayudu. 1982. Hierarchical classifier design using mutual information. IEEE

Transactions on pattern analysis and machine intelligence 4 (1982), 441–445.
[29] Haixiang Shi, Rajesh Vellore Arumugam, Chuan Heng Foh, and Kyawt Kyawt Khaing. 2012. Optimal disk storage

allocation for multi-tier storage system. In APMRC, 2012 Digest. IEEE, 1–7.
[30] Tracy F Sienknecht, Richard J Friedrich, Joseph J Martinka, and Peter M Friedenbach. 1994. The implications of

distributed data in a commercial environment on the design of hierarchical storage management. Performance
Evaluation 20, 1-3 (1994), 3–25.

[31] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian Schrittwieser,

Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural

networks and tree search. nature 529, 7587 (2016), 484.
[32] John D Strunk. 2012. Hybrid Aggregates: Combining SSDs and HDDs in a single storage pool. ACM SIGOPS Operating

Systems Review 46, 3 (2012), 50–56.

[33] Giuseppe Vietri, Liana V Rodriguez, Wendy A Martinez, Steven Lyons, Jason Liu, Raju Rangaswami, Ming Zhao, and

Giri Narasimhan. 2018. Driving cache replacement with ml-based lecar. In 10th {USENIX} Workshop on Hot Topics in
Storage and File Systems (HotStorage 18).

[34] Hui Wang and Peter J Varman. 2014. Balancing fairness and efficiency in tiered storage systems with bottleneck-aware

allocation.. In FAST, Vol. 14. 229–242.
[35] Fenggang Wu, Bingzhe Li, Zhichao Cao, Baoquan Zhang, Ming-Hong Yang, Hao Wen, and David HC Du. 2019.

ZoneAlloy: Elastic Data and Space Management for Hybrid {SMR} Drives. In 11th USENIX Workshop on Hot Topics in
Storage and File Systems (HotStorage 19).

[36] Fenggang Wu, Baoquan Zhang, Zhichao Cao, Hao Wen, Bingzhe Li, Jim Diehl, Guohua Wang, and David HC Du. 2018.

Data management design for interlaced magnetic recording. In 10th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage 18).

[37] Kan Wu, Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2019. Towards an Unwritten Contract of Intel Optane

SSD. In 11th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage 19). USENIX Association, Renton,
WA.

[38] Ji Xue, Feng Yan, Alma Riska, and Evgenia Smirni. 2014. Storage Workload Isolation via Tier Warming: How Models

Can Help.. In ICAC. 1–11.
[39] Jinfeng Yang and David J Lilja. 2018. Reducing Relational Database Performance Bottlenecks Using 3D XPoint

Storage Technology. In 2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And
Communications/12th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). IEEE,
1804–1808.

[40] Zhengyu Yang, Morteza Hoseinzadeh, Allen Andrews, Clay Mayers, David Thomas Evans, Rory Thomas Bolt, Janki

Bhimani, Ningfang Mi, and Steven Swanson. 2017. AutoTiering: automatic data placement manager in multi-tier

all-flash datacenter. In Performance Computing and Communications Conference (IPCCC), 2017 IEEE 36th International.
IEEE, 1–8.

ACM Trans. Storage, Vol. 37, No. 4, Article 111. Publication date: August 2019.

	Abstract
	1 Introduction
	2 Basic SVM Migration Algorithm
	2.1 Discussion between Hybrid Storage System and Caching System
	2.2 Algorithm Description
	2.3 Baseline Algorithm I: Popularity-based Algorithm
	2.4 Baseline algorithm II: HAT Algorithm
	2.5 Baseline algorithm III: LRU Algorithm
	2.6 Baseline algorithm IV: ChewAnalyzer Algorithm

	3 Performance of Basic-SVM Algorithm
	3.1 Trace Characteristics and System Configuration
	3.2 Performance Comparisons
	3.3 Issues of Basic-SVM Migration Algorithm

	4 K-SVM Migration Algorithm
	4.1 Algorithm Description
	4.2 K-SVM Results
	4.3 K-SVM Overhead Discussion

	5 Effect of Different Parameters
	5.1 Slice size
	5.2 Space Capacity Ratio between PT and CT
	5.3 Time Interval T
	5.4 Available Back-end Bandwidth
	5.5 Discussion of Different Design Factors
	5.6 Effect on Frequency and Recency

	6 A Real System Implementation
	7 Related Work
	8 Conclusion and Future Work
	References

