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Background and motivation

• TiKV: open-source transactional key-value database
• Use RocksDB as backend storage engine
• Raft consensus algorithm
• https://github.com/tikv/

• RocksDB: a persistent key-value store engine
• RocksDB has many configurations. It is hard to choose proper values in 

production. 
• The goal is to auto-tune RocksDB in real time for different workloads

• Dana Van Aken et al, Automatic Database Management System 
Tuning Through Large-scale Machine Learning, SIGMOD 2017 .

https://github.com/tikv/


Pipeline



ML model

• Gaussian Process Regression: a non-parametric model based on the 
Gaussian Distribution

• Then apply the estimation to Bayesian optimization
• Use GPR to estimates the distribution of the sample—the mean of X, m(X), 

and its standard deviation, s(X).
• Use the acquisition function to guide the next sample, and give the 

recommended value.

• Explore && exploit
• Exploration: The function explores new points in unknown areas where there 

is currently insufficient data.
• Exploitation: The function uses the data for model training and estimation to 

find the optimal prediction in the known areas with sufficient data.
• Use Upper Confidence Bound function to do tradeoff

• U(X) = m(X) + k*s(X)



Workload && knobs

• Workloads: generated by ycsb
• write-heavy, range-scan (both long and short), point-lookup [2]

• Knobs:

• Metrics: Throughput / Latency

Parameter Workload/expected behaviors Valid range/value set

disable-auto-compactions write-heavy: turning on is better
point-lookup, range-scan: turning off is better {1, 0}

block-size point-lookup: the smaller the better
range-scan: the larger the better {4k,8k,16k,32k,64k}

bloom-filter-bits-per-key point-lookup, range-scan: larger the better [5,10,15,20]

optimize-filters-for-hits point-lookup, range-scan: turning off is better {1,0}



Evaluation
• workload=pntlookup80 
• knobs={'bloom-filter-bits-per-key', 'optimize-filters-for-hits', 
'block-size', 'disable-auto-compactions’} 

• metric=get_latency

More details: 
https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/

https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/


Evaluation
• workload=pntlookup80 
• knobs={rocksdb.writecf.bloom-filter-bits-per-key,     
rocksdb.defaultcf.bloom-filter-bits-per-key, 
rocksdb.writecf.optimize-filters-for-hits,  
rocksdb.defaultcf.block-size, rocksdb.defaultcf.disable-auto-
compactions} 

• metric=get_throughput

More details: 
https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/

https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/


Evaluation
• workload=shortscan
• knobs={'Bloom-filter-bits-per-key', 'optimize-filters-for-hits', 
'block-size', 'disable-auto-compactions'}

• metric=scan_latency

More details: 
https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/

https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/


Conclusion and limitations

Conlcusions:
• ML can help finding patterns that might be omitted by DBA

• Some parameters have little effect on the results.
• The effect of some parameters is in contrary to expectations. 
• Some workload may trigger other background operations that DBA does not 

know.

Limitations:
• Changing some knobs may need restarting DB.

• -> CANNOT restart!

• Use static ycsb setting.
• -> Workloads in production are dynamically changed

More details: 
https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/

https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/


Auto-Tune RocksDB Rate Limiter

• Rate-Limiter: control the speed of background write operations, like 
compaction and flush.

• https://github.com/facebook/rocksdb/wiki/Rate-Limiter
• https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html

• Large/Burst write operations when doing compactions may cause a 
large read latency on user side.

• Proposal: 
• Forecast the upcoming read I/O from user
• Auto tune the upper-bound of rate limiter(write I/O) based on predicted 

value

https://github.com/facebook/rocksdb/wiki/Rate-Limiter
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html


Workload forecast
• Query-based Workload Forecasting for Self-Driving Database 

Management Systems [SIGMOD ‘18]
• Linear Regression in a recent time window

• Workloads –– real read workload threads
• Prediction –– predicted read I/O (Bytes)
• Rate Limit –– auto-tuned rate limiter value (Bytes)



Workload forecast



Workload forecast



Implementation

• Implemented in C++[RocksDB side] and Rust[TiKV side]
• Predict and re-config every 5 seconds



Evaluation #1

• Periodic read workload:
• Round_1: 1 from  20:49:21 to  20:59:21
• Round_2: 9 from  20:59:23 to  21:09:23
• Round_3: 1 from  21:09:25 to  21:19:25
• Round_4: 9 from  21:19:27 to  21:29:27
• Round_5: 1 from  21:29:29 to  21:39:29
• Round_6: 9 from  21:39:31 to  21:49:31
• Round_7: 1 from  21:49:33 to  21:59:33
• Round_8: 9 from  21:59:35 to  22:09:35
• Round_9: 1 from  22:09:37 to  22:19:37

• Steady write workload



Without auto-tuned 
Rate Limiter

Evaluation #1



With auto-tuned Rate 
Limiter

Evaluation #1

Reduced Latency 
[average gRPC
message duration]

Improved throughput 
[QPS]



Evaluation #2

• Running steady read workload, and suddenly inject a write 
workload(to trigger burst compaction/flush operations).



Without auto-tuned 
Rate Limiter

Evaluation #2



With auto-tuned Rate 
Limiter

Evaluation #2

Reduced Latency 
[average gRPC
message duration]

Less fluctuation [QPS]



Potential future of self-driving 
database 
• Self-driving
• Elastic (Automatically scale on cloud/serverless environment)
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