
Auto-Tuning RocksDB by
machine learning

Yuanli Wang
William Batu

Background and motivation

• TiKV: open-source transactional key-value database
• Use RocksDB as backend storage engine
• Raft consensus algorithm
• https://github.com/tikv/

• RocksDB: a persistent key-value store engine
• RocksDB has many configurations. It is hard to choose proper values in

production.
• The goal is to auto-tune RocksDB in real time for different workloads

• Dana Van Aken et al, Automatic Database Management System
Tuning Through Large-scale Machine Learning, SIGMOD 2017 .

https://github.com/tikv/

Pipeline

ML model

• Gaussian Process Regression: a non-parametric model based on the
Gaussian Distribution

• Then apply the estimation to Bayesian optimization
• Use GPR to estimates the distribution of the sample—the mean of X, m(X),

and its standard deviation, s(X).
• Use the acquisition function to guide the next sample, and give the

recommended value.

• Explore && exploit
• Exploration: The function explores new points in unknown areas where there

is currently insufficient data.
• Exploitation: The function uses the data for model training and estimation to

find the optimal prediction in the known areas with sufficient data.
• Use Upper Confidence Bound function to do tradeoff

• U(X) = m(X) + k*s(X)

Workload && knobs

• Workloads: generated by ycsb
• write-heavy, range-scan (both long and short), point-lookup [2]

• Knobs:

• Metrics: Throughput / Latency

Parameter Workload/expected behaviors Valid range/value set

disable-auto-compactions write-heavy: turning on is better
point-lookup, range-scan: turning off is better {1, 0}

block-size point-lookup: the smaller the better
range-scan: the larger the better {4k,8k,16k,32k,64k}

bloom-filter-bits-per-key point-lookup, range-scan: larger the better [5,10,15,20]

optimize-filters-for-hits point-lookup, range-scan: turning off is better {1,0}

Evaluation
• workload=pntlookup80
• knobs={'bloom-filter-bits-per-key', 'optimize-filters-for-hits',
'block-size', 'disable-auto-compactions’}

• metric=get_latency

More details:
https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/

https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/

Evaluation
• workload=pntlookup80
• knobs={rocksdb.writecf.bloom-filter-bits-per-key,
rocksdb.defaultcf.bloom-filter-bits-per-key,
rocksdb.writecf.optimize-filters-for-hits,
rocksdb.defaultcf.block-size, rocksdb.defaultcf.disable-auto-
compactions}

• metric=get_throughput

More details:
https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/

https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/

Evaluation
• workload=shortscan
• knobs={'Bloom-filter-bits-per-key', 'optimize-filters-for-hits',
'block-size', 'disable-auto-compactions'}

• metric=scan_latency

More details:
https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/

https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/

Conclusion and limitations

Conlcusions:
• ML can help finding patterns that might be omitted by DBA

• Some parameters have little effect on the results.
• The effect of some parameters is in contrary to expectations.
• Some workload may trigger other background operations that DBA does not

know.

Limitations:
• Changing some knobs may need restarting DB.

• -> CANNOT restart!

• Use static ycsb setting.
• -> Workloads in production are dynamically changed

More details:
https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/

https://www.cncf.io/blog/2019/12/10/autotikv-tikv-tuning-made-easy-by-ai-and-machine-learning/

Auto-Tune RocksDB Rate Limiter

• Rate-Limiter: control the speed of background write operations, like
compaction and flush.

• https://github.com/facebook/rocksdb/wiki/Rate-Limiter
• https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html

• Large/Burst write operations when doing compactions may cause a
large read latency on user side.

• Proposal:
• Forecast the upcoming read I/O from user
• Auto tune the upper-bound of rate limiter(write I/O) based on predicted

value

https://github.com/facebook/rocksdb/wiki/Rate-Limiter
https://rocksdb.org/blog/2017/12/18/17-auto-tuned-rate-limiter.html

Workload forecast
• Query-based Workload Forecasting for Self-Driving Database

Management Systems [SIGMOD ‘18]
• Linear Regression in a recent time window

• Workloads –– real read workload threads
• Prediction –– predicted read I/O (Bytes)
• Rate Limit –– auto-tuned rate limiter value (Bytes)

Workload forecast

Workload forecast

Implementation

• Implemented in C++[RocksDB side] and Rust[TiKV side]
• Predict and re-config every 5 seconds

Evaluation #1

• Periodic read workload:
• Round_1: 1 from 20:49:21 to 20:59:21
• Round_2: 9 from 20:59:23 to 21:09:23
• Round_3: 1 from 21:09:25 to 21:19:25
• Round_4: 9 from 21:19:27 to 21:29:27
• Round_5: 1 from 21:29:29 to 21:39:29
• Round_6: 9 from 21:39:31 to 21:49:31
• Round_7: 1 from 21:49:33 to 21:59:33
• Round_8: 9 from 21:59:35 to 22:09:35
• Round_9: 1 from 22:09:37 to 22:19:37

• Steady write workload

Without auto-tuned
Rate Limiter

Evaluation #1

With auto-tuned Rate
Limiter

Evaluation #1

Reduced Latency
[average gRPC
message duration]

Improved throughput
[QPS]

Evaluation #2

• Running steady read workload, and suddenly inject a write
workload(to trigger burst compaction/flush operations).

Without auto-tuned
Rate Limiter

Evaluation #2

With auto-tuned Rate
Limiter

Evaluation #2

Reduced Latency
[average gRPC
message duration]

Less fluctuation [QPS]

Potential future of self-driving
database
• Self-driving
• Elastic (Automatically scale on cloud/serverless environment)

	Auto-Tuning RocksDB by machine learning
	Background and motivation
	Pipeline
	ML model
	Workload && knobs
	Evaluation
	Evaluation
	Evaluation
	Conclusion and limitations
	Auto-Tune RocksDB Rate Limiter
	Workload forecast
	Workload forecast
	Workload forecast
	Implementation
	Evaluation #1
	Evaluation #1
	Evaluation #1
	Evaluation #2
	Evaluation #2
	Evaluation #2
	Potential future of self-driving database

