
More on games (Ch. 5.4-5.7)

Announcements

HW3 posted, due Wednesday after break

Midterm will be on “gradescope” (got
an email from them... signup optional)

Forward pruning

You can also save time searching by using
“expert knowledge” about the problem

For example, in both Go and Chess the start
of the game has been very heavily analyzed
over the years

There is no reason to redo this search every
time at the start of the game, instead we can
just look up the “best” response

Random games

If we are playing a “game of chance”, we can
add chance nodes to the search tree

Instead of either player picking max/min,
it takes the expected value of its children

This expected value is then passed up to the
parent node which can choose to min/max
this chance (or not)

Random games

Here is a simple slot machine example:

V(chance) =

pull don't pull

0chance node

-1 100

Random games

You might need to modify your mid-state
evaluation if you add chance nodes

Minimax just cares about the largest/smallest,
but expected value is an implicit average:

R is better L is better
1 4 2 2

.9 .9
.1 .1

1 40 2 2

.9 .9
.1 .1

Random games

Some partially observable games (i.e. card
games) can be searched with chance nodes

As there is a high degree of chance, often it is
better to just assume full observability
(i.e. you know the order of cards in the deck)

Then find which actions perform best over all
possible chance outcomes (i.e. all possible
deck orderings)

Random games

For example in blackjack, you can see what
cards have been played and a few of the
current cards in play

You then compute all possible decks that could
lead to the cards in play (and used cards)

Then find the value of all actions (hit or stand)
averaged over all decks (assumed equal
chance of possible decks happening)

Random games

If there are too many possibilities for all the
chance outcomes to “average them all”,
you can sample

This means you can search the chance-tree
and just randomly select outcomes (based on
probabilities) for each chance node

If you have a large number of samples, this
should converge to the average

MCTS

How to find which actions are “good”?

The “Upper Confidence Bound applied to
Trees” UCT is commonly used:

This ensures a trade off between checking
branches you haven't explored much and
exploring hopeful branches
(https://www.youtube.com/watch?v=Fbs4lnGLS8M)

MCTS

?? ?

MCTS

0/0

0/00/0 0/0

MCTS

0/0

0/00/0 0/0

Parentchild

MCTS

0/0

0/00/0 0/0∞

UCB value

∞ ∞

Pick max on depth 1 (I'll pick left-most)

MCTS

0/0

0/00/0 0/0∞ ∞ ∞

lose

(random playout)

MCTS

0/1

0/00/1 0/0∞ ∞ ∞

lose

(random playout)

update (all the way to root)

MCTS

0/1

0/00/1 0/00 ∞ ∞

update UCB values (all nodes)

MCTS

0/1

0/00/1 0/00 ∞ ∞

win

select max UCB
on depth 1
& rollout

MCTS

1/2

1/10/1 0/00 ∞ ∞

update statistics

win

MCTS

1/2

1/10/1 0/01.1 2.1 ∞

update UCB vals

MCTS

1/2

1/10/1 0/01.1 2.1 ∞

select max UCB
on depth 1
&rollout

win

MCTS

2/3

1/10/1 1/11.1 2.1 ∞

win

update statistics

MCTS

2/3

1/10/1 1/11.5 2.5 2.5

update UCB vals

https://www.youtube.com/watch?v=Fbs4lnGLS8M

MCTS

2/3

1/10/1 1/11.5 2.5 2.5

select max UCB
on depth 1

0/0 0/0∞∞

max on depth 1 a tie,
can pick either

MCTS

2/3

1/10/1 1/11.5 2.5 2.5

select max UCB
on depth 2

0/0 0/0∞∞

also a tie on depth 2,
can pick either (I go left)

MCTS

2/3

1/10/1 1/11.5 2.5 2.5

rollout

0/0 0/0∞∞

win

MCTS

3/4

2/20/1 1/11.5 2.5 2.5

1/1 0/0∞∞

win

update statistics

MCTS

3/4

2/20/1 1/11.7 2.1 2.7

1/1 0/0∞2.2

update UCB vals

times(parent(n))=2

1/1 + √(2 ln(2)/1)

MCTS

3/4

2/20/1 1/11.7 2.1 2.7

1/1 0/0∞2.2

pick max UCB
on depth=1

MCTS

3/4

2/20/1 1/11.7 2.1 2.7

1/1 0/0∞2.2

pick max UCB
on depth=2

0/0 0/0∞∞

MCTS

So the algorithm’s pseudo-code is:
Loop:

(1) Start at root
(2) Pick child with best UCB value
(3) If current node visited before,

goto step (2)
(4) Do a random “rollout” and record

result up tree until root

MCTS

Pros:
(1) The “random playouts” are essentially

generating a mid-state evaluation for you
(2) Has shown to work well on wide & deep

trees, can also combine distributed comp.

Cons:
(1) Does not work well if the state does not

“build up” well
(2) Often does not work on 1-player games

MCTS in games

AlphaGo/Zero has been in the news recently,
and is also based on neural networks

AlphaGo uses Monte-Carlo tree search guided
by the neural network to prune useless parts

Often limiting Monte-Carlo in a static way
reduces the effectiveness, much like mid-state
evaluations can limit algorithm effectiveness

Basically, AlphaGo uses a neural network
to “prune” parts for a Monte-carlo search

MCTS in games

MCTS

Game theory

Typically game theory uses a payoff matrix
to represent the value of actions

The first value is the reward for the left player,
right for top (positive is good for both)

Dominance & equilibrium

Here is the famous “prisoner's dilemma”

Each player chooses one action without
knowing the other's and the is only played once

Dominance & equilibrium

What option would you pick?

Why?

Dominance & equilibrium

What would a rational agent pick?

If prisoner 2 confesses, we are in the first
column... -8 if we confess, or -10 if we lie
--> Thus we should confess

If prisoner 2 lies, we are in the second column,
0 if we confess,
-1 if we lie
--> We should confess

Dominance & equilibrium

It turns out regardless of the other player's
action, it is in our personal interest to confess

This is the Nash equilibrium, as any deviation
of strategy (i.e. lying) can result in a
lower score (i.e. if opponent confesses)

The Nash equilibrium
looks at the worst case
and is greedy

Dominance & equilibrium

Formally, a Nash equilibrium is when the
combined strategies of all players give no
incentive for any single player to change

In other words, if any single person decides
to change strategies, they cannot improve

Dominance & equilibrium

Alternatively, a Pareto optimum is a state
where no other state can result in a gain or
tie for all players (excluding all ties)

If the PD game, [-8, -8] is a Nash equilibrium,
but is not a Pareto optimum (as [-1, -1] better
for both players)

However [-10,0] is also
a Pareto optimum...

Dominance & equilibrium

Every game has at least one Nash equilibrium
and Pareto optimum, however...

- Nash equilibrium might not be the best
outcome for all players (like PD game,
assumes no cooperation)

- A Pareto optimum might not be stable
(in PD the [-10,0] is unstable as player 1
wants to switch off “lie” and to “confess”
if they play again or know strategy)

Dominance & equilibrium

Find the Nash and Pareto for the following:
(about lecturing in a certain csci class)

5, 5 -2, 2

1, -5 0, 0

Student
pay attention sleep

Teacher

prepare well

slack off

Find best strategy

How do we formally find a Nash equilibrium?

If it is zero-sum game, can use minimax
as neither player wants to switch for Nash
(our PD example was not zero sum)

Let's play a simple number game: two players
write down either 1 or 0 then show each other.
If the sum is odd, player one wins. Otherwise,
player 2 wins (on even sum)

Find best strategy

This gives the following payoffs:

(player 1's value first, then player 2's value)
We will run minimax on this tree twice:
1. Once with player 1 knowing player 2's move

(i.e. choosing after them)
2. Once with player 2 knowing player 1's move

-1, 1 1, -1

1, -1 -1, 1

Pick 0 Pick 1
Pick 0

Pick 1

Player 1
Player 2

Find best strategy

Player 1 to go first (max):

If player 1 goes first, it will always lose

0 1

1-1 1 -1

-1 -1

-1

Find best strategy

Player 2 to go first (min):

If player 2 goes first, it will always lose

0 1

1-1 1 -1

1 1

1

Find best strategy

This is not useful, and only really tells us that
the best strategy is between -1 and 1
(which is fairly obvious)

This minimax strategy can only find pure
strategies (i.e. you should play a single move
100% of the time)

To find a “mixed strategy” (probabilistically
play), we need to turn to linear programming

Find best strategy

A pure strategy is one where a player always
picks the same strategy (deterministic)

A mixed strategy is when a player chooses
actions probabilistically from a fixed
probability distribution (i.e. the percent of time
they pick an action is fixed)

If one strategy is better or equal to all others
across all responses, it is a dominant strategy

Find best strategy

The definition of a Nash equilibrium is when
no one has an incentive to change the
combined strategy between all players

So we will only consider our opponent's
rewards (and not consider our own)

This is a bit weird since we are not considering
our own rewards at all, which is why the Nash
equilibrium is sometimes criticized

Find best strategy

First we parameterize this and make the tree
stochastic:

Player 1 will choose action “0” with
probability p, and action “1” with (1-p)

If player 2 always picks 0, so the payoff for p2:
(1)p + (-1)(1-p)

If player 2 always picks 1, so the payoff for p2:
(-1)p + (1)(1-p)

Find best strategy

Plot these two lines:
U = (1)p + (-1)(1-p)
U = (-1)p + (1)(1-p)

As we maximize, the
opponent gets to pick
which line to play

Thus we choose the
intersection

opponent
pick blue
for this p

opponent
pick red
for this p

Find best strategy

Thus we find that our best strategy is to
play 0 half the time and 1 the other half

The result is we win as much as we lose on
average, and the overall game result is 0

Player 2 can find their strategy in this method
as well, and will get the same 50/50 strategy
(this is not always the case that both players
play the same for Nash)

Find best strategy

We have two actions, so one parameter (p)
and thus we look for the intersections of lines

If we had 3 actions (rock-paper-scissors), we
would have 2 parameters and look for the
intersection of 3 planes (2D)

This can generalize to any
number of actions (but not
a lot of fun)

Find best strategy

How does this compare on PD?

Player 1: p = prob confess...
P2 Confesses: -8*p + 0*(1-p)
P2 Lies: -10*p + (-1)*(1-p)

Cross at negative p, but red
line is better (confess)

	Slide 1
	Slide 2
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

